# American Institute of Mathematical Sciences

June  2012, 5(3): 683-706. doi: 10.3934/dcdss.2012.5.683

## A bifurcation for a generalized Burgers' equation in dimension one

 1 LMPA Joseph Liouville (ULCO) FR 2956 CNRS, Université Lille Nord de France, 50 rue F. Buisson, B.P. 699, F-62228 Calais Cedex, France

Received  August 2010 Revised  April 2011 Published  October 2011

We consider the generalized Burgers' equation \begin{eqnarray*} \left\{ \begin{array}{ll} \partial_t u = \partial_x^2u - u \partial_x u + u^p - \lambda u &\textrm{ in } \overline{\Omega} \textrm{ for } t>0, \\ \mathcal{B}(u)=0 & \textrm{ on } \partial \Omega \textrm{ for } t>0, \\ u(\cdot,0) = \varphi \geq 0 & \textrm{ in } \overline{\Omega}, \end{array} \right. \end{eqnarray*} with $p>1$, $\lambda \in \mathbb{R}$, $\Omega$ a subdomain of $\mathbb{R}$, and where $\mathcal{B}(u)=0$ denotes some boundary conditions. First, using some phase plane arguments, we study the existence of stationary solutions under the Dirichlet or the Neumann boundary conditions and prove a bifurcation depending on the parameter $\lambda$. Then, we compare positive solutions of the parabolic equation with appropriate stationary solutions to prove that global existence can occur when $\mathcal{B}(u)=0$ stands for the Dirichlet, the Neumann or the dissipative dynamical boundary conditions $\sigma \partial_t u + \partial _\nu u=0$. Finally, for many boundary conditions, global existence and blow up phenomena for solutions of the nonlinear parabolic problem in an unbounded domain $\Omega$ are investigated by using some standard super-solutions and some weighted $L^1-$norms.
Citation: Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683
##### References:
 [1] H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis," Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990. [2] C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 17 (2006), 35-37. [3] J. von Below and C. De Coster, A qualitative theory for parabolic problems under dynamical boundary conditions, Journal of Inequalities and Applications, 5 (2000), 467-486. doi: 10.1155/S1025583400000266. [4] J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion, Comm. Partial Differential Equations, 21 (1996), 255-279. [5] J. von Below and G. Pincet Mailly, Blow up for reaction diffusion equations under dynamical boundary conditions, Communications in Partial Differential Equations, 28 (2003), 223-247. doi: 10.1081/PDE-120019380. [6] J. von Below and G. Pincet Mailly, Blow Up for some nonlinear parabolic problems with convection under dynamical boundary conditions,, in, 2007 (): 1031. [7] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. [8] J.-F. Rault, Phénomène d'Explosion et Existence Globale pour Quelques Problèmes Paraboliques sous les Conditions au Bord Dynamiques, Thèse Doctorale à l'Université du Littoral Côte d'Opale, 2010.

show all references

##### References:
 [1] H. Amann, "Ordinary Differential Equations. An Introduction to Nonlinear Analysis," Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990. [2] C. Bandle, J. von Below and W. Reichel, Parabolic problems with dynamical boundary conditions: Eigenvalue expansions and blow up, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Math. Appl., 17 (2006), 35-37. [3] J. von Below and C. De Coster, A qualitative theory for parabolic problems under dynamical boundary conditions, Journal of Inequalities and Applications, 5 (2000), 467-486. doi: 10.1155/S1025583400000266. [4] J. von Below and S. Nicaise, Dynamical interface transition in ramified media with diffusion, Comm. Partial Differential Equations, 21 (1996), 255-279. [5] J. von Below and G. Pincet Mailly, Blow up for reaction diffusion equations under dynamical boundary conditions, Communications in Partial Differential Equations, 28 (2003), 223-247. doi: 10.1081/PDE-120019380. [6] J. von Below and G. Pincet Mailly, Blow Up for some nonlinear parabolic problems with convection under dynamical boundary conditions,, in, 2007 (): 1031. [7] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. [8] J.-F. Rault, Phénomène d'Explosion et Existence Globale pour Quelques Problèmes Paraboliques sous les Conditions au Bord Dynamiques, Thèse Doctorale à l'Université du Littoral Côte d'Opale, 2010.
 [1] Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 [2] Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2621-2634. doi: 10.3934/dcdsb.2021151 [3] Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093 [4] Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072 [5] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [6] Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 [7] Tetsuya Ishiwata, Shigetoshi Yazaki. A fast blow-up solution and degenerate pinching arising in an anisotropic crystalline motion. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2069-2090. doi: 10.3934/dcds.2014.34.2069 [8] Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 [9] Juntang Ding, Chenyu Dong. Blow-up results of the positive solution for a weakly coupled quasilinear parabolic system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021222 [10] Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 [11] Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 [12] Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077 [13] Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633 [14] Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 [15] Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117 [16] Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic and Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043 [17] Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure and Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721 [18] Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519 [19] Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 [20] Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

2020 Impact Factor: 2.425