-
Previous Article
Fourth-order hemivariational inequalities
- DCDS-S Home
- This Issue
-
Next Article
On some nonlocal eigenvalue problems
Multiplicity results to elliptic problems in $\mathbb{R}^N$
1. | Dipartimento Patrimonio Architettonico e Urbanistico, Facoltà di Architettura, Università di Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy |
2. | Department of Science for Engineering and Architecture (Mathematics Section), Engineering Faculty, University of Messina, 98166 - Messina, Italy |
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975. |
[2] |
G. Barletta, Existence of solutions for some discontinuous problems involving the p-Laplacian, J. Nonlinear Funct. Anal. Differ. Equ., 2 (2008), 95-119. |
[3] |
G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059.
doi: 10.1016/j.jde.2008.02.025. |
[4] |
H. Brézis, "Analyse Fonctionnelle - Théorie et Applications," Collection Mathématiques Appliquées pur la Maîtrise, Masson, Paris, 1983. |
[5] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition, Classics Appl. Math., 5, SIAM, Philadelphia, 1990. |
[6] |
J. V. Gonçalves and C. O. Alves, Existence of positive solutions for $m-$laplacian equations in $\mathbb{R}^N2$ involving critical Sobolev exponents, Nonlinear Anal., 32 (1998), 53-70.
doi: 10.1016/S0362-546X(97)00452-5. |
[7] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational–hemivariational inequalities, J. Math. Anal. Appl., 325 (2007), 975-986.
doi: 10.1016/j.jmaa.2006.02.062. |
[8] |
A. Kristály, A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity, Electron. J. Differential Equations, 2007, 1-11. |
[9] |
S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37-52.
doi: 10.1016/S0362-546X(00)00171-1. |
[10] |
B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226. |
[11] |
G. Zhang and S. Liu, Three symmetric solutions for a class of elliptic equations involving the p-Laplacian with discontinuous nonlinearities in $\mathbb{R}^N2$, Nonlinear Anal., 67 (2007), 2232-2239.
doi: 10.1016/j.na.2006.09.013. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975. |
[2] |
G. Barletta, Existence of solutions for some discontinuous problems involving the p-Laplacian, J. Nonlinear Funct. Anal. Differ. Equ., 2 (2008), 95-119. |
[3] |
G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations, 244 (2008), 3031-3059.
doi: 10.1016/j.jde.2008.02.025. |
[4] |
H. Brézis, "Analyse Fonctionnelle - Théorie et Applications," Collection Mathématiques Appliquées pur la Maîtrise, Masson, Paris, 1983. |
[5] |
F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition, Classics Appl. Math., 5, SIAM, Philadelphia, 1990. |
[6] |
J. V. Gonçalves and C. O. Alves, Existence of positive solutions for $m-$laplacian equations in $\mathbb{R}^N2$ involving critical Sobolev exponents, Nonlinear Anal., 32 (1998), 53-70.
doi: 10.1016/S0362-546X(97)00452-5. |
[7] |
A. Kristály, C. Varga and V. Varga, A nonsmooth principle of symmetric criticality and variational–hemivariational inequalities, J. Math. Anal. Appl., 325 (2007), 975-986.
doi: 10.1016/j.jmaa.2006.02.062. |
[8] |
A. Kristály, A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity, Electron. J. Differential Equations, 2007, 1-11. |
[9] |
S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal., 48 (2002), 37-52.
doi: 10.1016/S0362-546X(00)00171-1. |
[10] |
B. Ricceri, On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220-226. |
[11] |
G. Zhang and S. Liu, Three symmetric solutions for a class of elliptic equations involving the p-Laplacian with discontinuous nonlinearities in $\mathbb{R}^N2$, Nonlinear Anal., 67 (2007), 2232-2239.
doi: 10.1016/j.na.2006.09.013. |
[1] |
Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058 |
[2] |
Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172 |
[3] |
Zhenhai Liu, Van Thien Nguyen, Jen-Chih Yao, Shengda Zeng. History-dependent differential variational-hemivariational inequalities with applications to contact mechanics. Evolution Equations and Control Theory, 2020, 9 (4) : 1073-1087. doi: 10.3934/eect.2020044 |
[4] |
O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185 |
[5] |
Rong Xiao, Yuying Zhou. Multiple solutions for a class of semilinear elliptic variational inclusion problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 991-1002. doi: 10.3934/jimo.2011.7.991 |
[6] |
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155 |
[7] |
T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675 |
[8] |
Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial and Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673 |
[9] |
Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091 |
[10] |
Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial and Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045 |
[11] |
Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022017 |
[12] |
Ouafa Belguidoum, Hassina Grar. An improved projection algorithm for variational inequality problem with multivalued mapping. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022002 |
[13] |
Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105 |
[14] |
Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437 |
[15] |
Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021046 |
[16] |
Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial and Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827 |
[17] |
Tomas Godoy, Alfredo Guerin. Existence of nonnegative solutions to singular elliptic problems, a variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1505-1525. doi: 10.3934/dcds.2018062 |
[18] |
Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315-328. doi: 10.3934/dcds.2000.6.315 |
[19] |
Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507 |
[20] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 373-393. doi: 10.3934/naco.2021011 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]