\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fourth-order hemivariational inequalities

Abstract Related Papers Cited by
  • The aim of this paper is to investigate an ordinary fourth-order hemivariational inequality. By using non-smooth variational methods, infinitely many solutions satisfying this type of inequality, whenever the potential of the nonlinear term has a suitable growth condition or convenient oscillatory assumptions at zero or at infinity, are guaranteed. As a consequence, a multiplicity result for non-smooth fourth-order boundary value problems is pointed out.
    Mathematics Subject Classification: Primary: 34B15; Secondary: 58E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Z. Bai and H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.doi: 10.1016/S0022-247X(02)00071-9.

    [2]

    G. Bonanno and B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.doi: 10.1016/j.jmaa.2008.01.049.

    [3]

    G. Bonanno and B. Di Bella, A fourth-order boundary value problem for a Sturm-Liouville type equation, Appl. Math. Comput., 217 (2010), 3635-3640.doi: 10.1016/j.amc.2010.10.019.

    [4]

    G. Bonanno and B. Di Bella, Infinitely many solutions for fourth-order elastic beam equations, NoDEA Nonlinear Differential Equations Appl., 18 (2011), 357-368.

    [5]

    G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, Art. ID 670675, 20 pp.

    [6]

    A. Cabada, J. Á. Cid and L. Sanchez, Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal., 67 (2007), 1599-1612.doi: 10.1016/j.na.2006.08.002.

    [7]

    S. Carl, V. K. Le and D. Motreanu, "Nonsmoth Variational Problems and Their Inequalities. Comparison Principles and Applications," Springer Monographs in Mathematics, Springer, New York, 2007.

    [8]

    K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.doi: 10.1016/0022-247X(81)90095-0.

    [9]

    F. H. Clarke, "Optimization and Nonsmooth Analysis," Second edition, Classics Appl. Math., 5, SIAM, Philadelphia, 1990.

    [10]

    E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 74 (1983), 274-282.

    [11]

    M. R. Grossinho, L. Sanchez and S. A. Tersian, On the solvability of a boundary value problem for a fourth-order ordinary differential equation, Appl. Math. Lett., 18 (2005), 439-444.

    [12]

    T. Gyulov and G. Moroşanu, On a nonsmooth fourth order boundary value problem, Nonlinear Anal., 67 (2007), 2800-2814.doi: 10.1016/j.na.2006.09.041.

    [13]

    T. Gyulov and G. Moroşanu, On a class of boundary value problems involving the p-biharmonic operator, J. Math. Anal. Appl., 367 (2010), 43-57.doi: 10.1016/j.jmaa.2009.12.022.

    [14]

    G. Han and Z. Xu, Multiple solutions of some nonlinear fourth-order beam equations, Nonlinear Anal., 68 (2008), 3646-3656.doi: 10.1016/j.na.2007.04.007.

    [15]

    X.-L. Liu and W.-T. Li, Existence and multiplicity of solutions for fourth-order boundary values problems with three parameters, Math. Comput. Modelling, 46 (2007), 525-534.doi: 10.1016/j.mcm.2006.11.018.

    [16]

    X.-L. Liu and W.-T. Li, Existence and multiplicity of solutions for fourth-order boundary values problems with parameters, J. Math. Anal. Appl., 327 (2007), 362-375.doi: 10.1016/j.jmaa.2006.04.021.

    [17]

    S. A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann type problem involving the p-Laplacian, J. Differential Equations, 182 (2002), 108-120.doi: 10.1006/jdeq.2001.4092.

    [18]

    D. Motreanu and P. D. Panagiotopoulos, "Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities," Nonconvex Optim. Appl., 29, Kluwer Academic Publishers, Dordrecht, 1999.

    [19]

    D. Motreanu and V. Rădulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems," Nonconvex Optimization and Applications, 67, Kluwer Academic Publishers, Dordrecht, 2003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return