\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Three nonzero periodic solutions for a differential inclusion

Abstract Related Papers Cited by
  • We prove the existence of three non-zero periodic solutions for an ordinary differential inclusion. Our approach is variational and based on a multiplicity theorem for the critical points of a nonsmooth functional, which extends a recent result of Ricceri.
    Mathematics Subject Classification: Primary: 34A60; Secondary: 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bonanno, A minimax inequality and its applications to ordinary differential equations, J. Math. Anal. Appl., 270 (2002), 210-229.doi: 10.1016/S0022-247X(02)00068-9.

    [2]

    A. Boucherif and S. M. Bouguima, Periodic solutions of second [order] ordinary differential equations with a discontinuous nonlinearity, in "Nonlinear Partial Differential Equations" (Fès, 1994), Pitman Res. Notes Math. Ser., 343, Longman, Harlow, (1996), 54-60.

    [3]

    K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102-129.doi: 10.1016/0022-247X(81)90095-0.

    [4]

    L. H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions $y''\in F(t,y,y')$, Ann. Polon. Math., 54 (1991), 195-226.

    [5]

    M. Frigon and A. Granas, Problèmes aux limites pour des inclusions différentielles de type semi-continues inférieurement, Riv. Mat. Univ. Parma (4), 17 (1991), 87-97.

    [6]

    A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal., 72 (2010), 1319-1338.doi: 10.1016/j.na.2009.08.001.

    [7]

    D. Kandilakis, N. C. Kourogenis and N. S. Papageorgiou, Two nontrivial critical points for nonsmooth functionals via local linking and applications, J. Global Optim., 34 (2006), 219-244.doi: 10.1007/s10898-005-3884-7.

    [8]

    M. Krastanov, N. Ribarska and T. Tsachev, A note on: "On a critical point theory for multivalued functionals and application to partial differential inclusions,'' Nonlinear Anal., 43 (2001), 153-158.

    [9]

    R. Livrea and S. A. Marano, On a min-max principle for non-smooth functions and applications, Commun. Appl. Anal., 13 (2009), 411-430.

    [10]

    D. Motreanu and P. D. Panagiotopoulos, "Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities," Nonconvex Optimization and its Applications, 29, Kluwer Academic Publishers, Dordrecht, 1999.

    [11]

    N. S. Papageorgiou and F. Papalini, Existence of two solutions for quasilinear periodic differential equations with discontinuities, Arch. Math. (Brno), 38 (2002), 285-296.

    [12]

    B. Ricceri, Multiplicity of global minima for parametrized functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 47-57.

    [13]

    B. Ricceri, A class of nonlinear eigenvalue problems with four solutions, J. Nonlinear Convex Anal., 11 (2010), 503-511.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return