August  2012, 5(4): 819-830. doi: 10.3934/dcdss.2012.5.819

A variational approach to a class of quasilinear elliptic equations not in divergence form

1. 

Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica - 00133 - Roma

2. 

Dipartimento di Matematica, Università della Calabria, Ponte Pietro Bucci 31 B, Arcavacata di Rende (Cosenza), 87036, Italy

Received  February 2011 Revised  May 2011 Published  November 2011

The aim of this paper is to use a variational approach in order to obtain the existence of non-trivial weak solutions of a quasilinear elliptic equation not in divergence form, in dimension $N=3$. Moreover, we prove that our solution is $C^{1, \alpha}(\overline\Omega)$ and also locally $C^{2, \alpha}(\overline\Omega)$ for a suitable $\alpha\in (0,1)$.
Citation: M. Matzeu, Raffaella Servadei. A variational approach to a class of quasilinear elliptic equations not in divergence form. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 819-830. doi: 10.3934/dcdss.2012.5.819
References:
[1]

H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790. doi: 10.1512/iumj.1978.27.27050.

[2]

A. Ambrosetti and D. Arcoya, On a quasilinear problem at strong resonance, Topol. Methods Nonlinear Anal., 6 (1995), 255-264.

[3]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, Cambridge, 2007.

[4]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[5]

D. Arcoya and P. J. Martinez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoam., 24 (2008), 597-616.

[6]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426. doi: 10.1051/cocv:2008031.

[7]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579. doi: 10.1016/0362-546X(92)90022-7.

[8]

H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.

[9]

D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 17 (2004), 119-126.

[10]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[12]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.

[13]

M. Girardi and M. Matzeu, A compactness result for quasilinear elliptic equations by Mountain Pass techniques, Rend. Mat. Appl. (7), 29 (2009), 83-95.

[14]

S. Pohožaev, Equations of the type $\Delta u=f(x,u,Du)$, Mat. Sb. (N.S.), 113(155) (1980), 324-338, 351.

[15]

R. Servadei, A semilinear elliptic PDE not in divergence form via variational methods,, J. Math. Anal. Appl., (). 

[16]

J. B. M. Xavier, Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 15 (1990), 59-67.

[17]

Z. Yan, A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 24 (1995), 1413-1416.

show all references

References:
[1]

H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790. doi: 10.1512/iumj.1978.27.27050.

[2]

A. Ambrosetti and D. Arcoya, On a quasilinear problem at strong resonance, Topol. Methods Nonlinear Anal., 6 (1995), 255-264.

[3]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, Cambridge, 2007.

[4]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[5]

D. Arcoya and P. J. Martinez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoam., 24 (2008), 597-616.

[6]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426. doi: 10.1051/cocv:2008031.

[7]

L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579. doi: 10.1016/0362-546X(92)90022-7.

[8]

H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614.

[9]

D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 17 (2004), 119-126.

[10]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[11]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[12]

M. Girardi and M. Matzeu, Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210.

[13]

M. Girardi and M. Matzeu, A compactness result for quasilinear elliptic equations by Mountain Pass techniques, Rend. Mat. Appl. (7), 29 (2009), 83-95.

[14]

S. Pohožaev, Equations of the type $\Delta u=f(x,u,Du)$, Mat. Sb. (N.S.), 113(155) (1980), 324-338, 351.

[15]

R. Servadei, A semilinear elliptic PDE not in divergence form via variational methods,, J. Math. Anal. Appl., (). 

[16]

J. B. M. Xavier, Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 15 (1990), 59-67.

[17]

Z. Yan, A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 24 (1995), 1413-1416.

[1]

Ilaria Fragalà, Filippo Gazzola, Gary Lieberman. Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains. Conference Publications, 2005, 2005 (Special) : 280-286. doi: 10.3934/proc.2005.2005.280

[2]

Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080

[3]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[4]

Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

[5]

Enrico Gerlach, Charlampos Skokos. Comparing the efficiency of numerical techniques for the integration of variational equations. Conference Publications, 2011, 2011 (Special) : 475-484. doi: 10.3934/proc.2011.2011.475

[6]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[7]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[8]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[9]

Dang Van Hieu, Le Dung Muu, Pham Kim Quy. New iterative regularization methods for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021185

[10]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[11]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[12]

Yaotian Shen, Youjun Wang. Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4667-4697. doi: 10.3934/cpaa.2020197

[13]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[14]

Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142

[15]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[16]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[17]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[18]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[19]

Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations and Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017

[20]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (245)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]