Citation: |
[1] |
H. Amann and M. G. Crandall, On some existence theorems for semi-linear elliptic equations, Indiana Univ. Math. J., 27 (1978), 779-790.doi: 10.1512/iumj.1978.27.27050. |
[2] |
A. Ambrosetti and D. Arcoya, On a quasilinear problem at strong resonance, Topol. Methods Nonlinear Anal., 6 (1995), 255-264. |
[3] |
A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Advanced Mathematics, 104, Cambridge University Press, Cambridge, 2007. |
[4] |
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7. |
[5] |
D. Arcoya and P. J. Martinez-Aparicio, Quasilinear equations with natural growth, Rev. Mat. Iberoam., 24 (2008), 597-616. |
[6] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.doi: 10.1051/cocv:2008031. |
[7] |
L. Boccardo and T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms and $L^1$ data, Nonlinear Anal., 19 (1992), 573-579.doi: 10.1016/0362-546X(92)90022-7. |
[8] |
H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 2 (1977), 601-614. |
[9] |
D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 17 (2004), 119-126. |
[10] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. |
[11] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[12] |
M. Girardi and M. Matzeu, Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques, Nonlinear Anal., 59 (2004), 199-210. |
[13] |
M. Girardi and M. Matzeu, A compactness result for quasilinear elliptic equations by Mountain Pass techniques, Rend. Mat. Appl. (7), 29 (2009), 83-95. |
[14] |
S. Pohožaev, Equations of the type $\Delta u=f(x,u,Du)$, Mat. Sb. (N.S.), 113(155) (1980), 324-338, 351. |
[15] |
R. Servadei, A semilinear elliptic PDE not in divergence form via variational methods, J. Math. Anal. Appl., in press. |
[16] |
J. B. M. Xavier, Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 15 (1990), 59-67. |
[17] |
Z. Yan, A note on the solvability in $W^{2, p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$, Nonlinear Anal., 24 (1995), 1413-1416. |