\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Three solutions with precise sign properties for systems of quasilinear elliptic equations

Abstract Related Papers Cited by
  • For a quasilinear elliptic system, the existence of two extremal solutions with components of opposite constant sign is established. If the system has a variational structure, the existence of a third nontrivial solution is shown.
    Mathematics Subject Classification: 35B30, 35J20, 49J40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Anane, Simplicité et isolation de la première valeur propre du $p$-Laplacien avec poids, (French) [Simplicity and isolation of the first eigenvalue of the $p$-Laplacian with weight], C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725-728.

    [2]

    D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Aust. Math. Soc., 77 (2008), 285-303.doi: 10.1017/S0004972708000282.

    [3]

    S. Carl, V. K. Le and D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications," Springer Monographs in Mathematics, Springer, New York, 2007.

    [4]

    S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal., 68 (2008), 2668-2676.doi: 10.1016/j.na.2007.02.013.

    [5]

    S. Carl and Z. Naniewicz, Vector quasi-hemivariational inequalities and discontinuous elliptic systems, J. Global Optim., 34 (2006), 609-634.doi: 10.1007/s10898-005-1651-4.

    [6]

    S. Carl and K. Perera, Sign-changing and multiple solutions for the $p$-Laplacian, Abstr. Appl. Anal., 7 (2002), 613-625.doi: 10.1155/S1085337502207010.

    [7]

    M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the $p$-Laplacian, J. Differential Equations, 159 (1999), 212-238.doi: 10.1006/jdeq.1999.3645.

    [8]

    L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, 2005.

    [9]

    L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.

    [10]

    D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392.

    [11]

    D. Motreanu and K. Perera, Multiple nontrivial solutions of Neumann $p$-Laplacian systems, Topol. Methods Nonlinear Anal., 34 (2009), 41-48.

    [12]

    D. Motreanu and Z. Zhang, Constant sign and sign changing solutions for systems of quasilinear elliptic equations, Set-Valued Var. Anal., 19 (2011), 255-269.

    [13]

    J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization., 12 (1984), 191-202.doi: 10.1007/BF01449041.

    [14]

    J. Zhang and Z. Zhang, Existence results for some nonlinear elliptic systems, Nonlinear Anal., 71 (2009), 2840-2846.doi: 10.1016/j.na.2009.01.158.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return