\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity of solutions for variable exponent Dirichlet problem with concave term

Abstract Related Papers Cited by
  • We consider a nonlinear Dirichlet boundary value problem involving the $p(x)$-Laplacian and a concave term. Our main result shows the existence of at least three nontrivial solutions. We use truncation techniques and the method of sub- and supersolutions.
    Mathematics Subject Classification: 35J20, 35J25, 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Aust. Math. Soc., 77 (2008), 285-303.doi: 10.1017/S0004972708000282.

    [2]

    K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems," Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston, Inc., Boston, MA, 1993.

    [3]

    S. Carl, V. K. Le and D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications," Springer Monographs in Mathematics, Springer, New York, 2007.

    [4]

    S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal., 68 (2008), 2668-2676.doi: 10.1016/j.na.2007.02.013.

    [5]

    X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), 397-417.doi: 10.1016/j.jde.2007.01.008.

    [6]

    X. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), 665-682.doi: 10.1016/j.jmaa.2006.07.093.

    [7]

    X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617.

    [8]

    X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.doi: 10.1006/jmaa.2001.7618.

    [9]

    X. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for p(x)-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277-282.

    [10]

    O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41(116) (1991), 592-618.

    [11]

    V. Maz'ja, "Sobolev Spaces," Translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985.

    [12]

    D. MotreanuThree solutions with precise sign properties for systems of quasilinear elliptic equations, Discrete Contin. Dyn. Syst. Ser. S, in print.

    [13]

    D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392.

    [14]

    D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 729-755.

    [15]

    D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 171-192.

    [16]

    D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc., 139 (2011), 3527-3535.doi: 10.1090/S0002-9939-2011-10884-0.

    [17]

    D. Motreanu and Z. Zhang, Constant sign and sign changing solutions for systems of quasilinear elliptic equations, Set-Valued Anal., 19 (2011), 255-269.doi: 10.1007/s11228-010-0142-z.

    [18]

    N. S. Papageorgiou and E. Rocha, A multiplicity theorem for a variable exponent Dirichlet problem, Glasg. Math. J., 50 (2008), 335-349.doi: 10.1017/S0017089508004242.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return