Citation: |
[1] |
D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity, Bull. Aust. Math. Soc., 77 (2008), 285-303.doi: 10.1017/S0004972708000282. |
[2] |
K.-C. Chang, "Infinite-Dimensional Morse Theory and Multiple Solution Problems," Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston, Inc., Boston, MA, 1993. |
[3] |
S. Carl, V. K. Le and D. Motreanu, "Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications," Springer Monographs in Mathematics, Springer, New York, 2007. |
[4] |
S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal., 68 (2008), 2668-2676.doi: 10.1016/j.na.2007.02.013. |
[5] |
X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differential Equations, 235 (2007), 397-417.doi: 10.1016/j.jde.2007.01.008. |
[6] |
X. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J. Math. Anal. Appl., 330 (2007), 665-682.doi: 10.1016/j.jmaa.2006.07.093. |
[7] |
X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617. |
[8] |
X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.doi: 10.1006/jmaa.2001.7618. |
[9] |
X. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for p(x)-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277-282. |
[10] |
O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J., 41(116) (1991), 592-618. |
[11] |
V. Maz'ja, "Sobolev Spaces," Translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. |
[12] |
D. Motreanu, Three solutions with precise sign properties for systems of quasilinear elliptic equations, Discrete Contin. Dyn. Syst. Ser. S, in print. |
[13] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations, 12 (2007), 1363-1392. |
[14] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 729-755. |
[15] |
D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, On $p$-Laplace equations with concave terms and asymmetric perturbations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 171-192. |
[16] |
D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc., 139 (2011), 3527-3535.doi: 10.1090/S0002-9939-2011-10884-0. |
[17] |
D. Motreanu and Z. Zhang, Constant sign and sign changing solutions for systems of quasilinear elliptic equations, Set-Valued Anal., 19 (2011), 255-269.doi: 10.1007/s11228-010-0142-z. |
[18] |
N. S. Papageorgiou and E. Rocha, A multiplicity theorem for a variable exponent Dirichlet problem, Glasg. Math. J., 50 (2008), 335-349.doi: 10.1017/S0017089508004242. |