August  2012, 5(4): 857-864. doi: 10.3934/dcdss.2012.5.857

Noncoercive elliptic equations with subcritical growth

1. 

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania, Department of Mathematics, University of Craiova, 200585 Craiova, Romania

Received  January 2011 Revised  February 2011 Published  November 2011

We study a class of nonlinear elliptic equations with subcritical growth and Dirichlet boundary condition. Our purpose in the present paper is threefold: (i) to establish the effect of a small perturbation in a nonlinear coercive problem; (ii) to study a Dirichlet elliptic problem with lack of coercivity; and (iii) to consider the case of a monotone nonlinear term with subcritical growth. This last feature enables us to use a dual variational method introduced by Clarke and Ekeland in the framework of Hamiltonian systems associated with a convex Hamiltonian and applied by Brezis to the qualitative analysis of large classes of nonlinear partial differential equations. Connections with the mountain pass theorem are also made in the present paper.
Citation: Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[2]

G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal., 8 (1996), 263-273.

[3]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliqueées pour la Maîtrise, Masson, Paris, 1983.

[4]

H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1983), 409-426. doi: 10.1090/S0273-0979-1983-15105-4.

[5]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963. doi: 10.1002/cpa.3160440808.

[6]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal., 68 (2008), 2668-2676. doi: 10.1016/j.na.2007.02.013.

[7]

F. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.

[8]

F. Clarke, Periodic solutions to Hamiltonian inclusions, J. Differential Equations, 40 (1981), 1-6. doi: 10.1016/0022-0396(81)90007-3.

[9]

I. Ekeland, A perturbation theory near convex Hamiltonian systems, J. Differential Equations, 50 (1983), 407-440. doi: 10.1016/0022-0396(83)90069-4.

[10]

R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177. doi: 10.1016/j.matpur.2008.09.008.

[11]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321-330.

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[13]

A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems," Encyclopedia of Mathematics and its Applications, 136, Cambridge University Press, Cambridge, 2010.

[14]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1969/1070), 609-623.

[15]

S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems, Arch. Math. (Basel), 75 (2000), 53-58.

[16]

R. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. doi: 10.1016/0040-9383(66)90013-9.

[17]

R. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. doi: 10.1090/S0002-9904-1964-11062-4.

[18]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital., IX (2010), 543-584.

[19]

P. Pucci and J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. doi: 10.1016/0022-1236(84)90072-7.

[20]

P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. doi: 10.1016/0022-0396(85)90125-1.

[21]

P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc., 299 (1987), 115-132. doi: 10.1090/S0002-9947-1987-0869402-1.

[22]

V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods," Contemporary Mathematics and Its Applications, 6, Hindawi Publishing Corporation, New York, 2008.

[23]

V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry, Universitatis Babes-Bolyai Mathematica, LV (2010), 99-106.

[24]

J. Toland, A duality principle for nonconvex optimisation and the calculus of variations, Arch. Rational Mech. Anal., 71 (1979), 41-61. doi: 10.1007/BF00250669.

[25]

X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91-96.

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7.

[2]

G. Bonanno and S. A. Marano, Positive solutions of elliptic equations with discontinuous nonlinearities, Topol. Methods Nonlinear Anal., 8 (1996), 263-273.

[3]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliqueées pour la Maîtrise, Masson, Paris, 1983.

[4]

H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 8 (1983), 409-426. doi: 10.1090/S0273-0979-1983-15105-4.

[5]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963. doi: 10.1002/cpa.3160440808.

[6]

S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal., 68 (2008), 2668-2676. doi: 10.1016/j.na.2007.02.013.

[7]

F. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.

[8]

F. Clarke, Periodic solutions to Hamiltonian inclusions, J. Differential Equations, 40 (1981), 1-6. doi: 10.1016/0022-0396(81)90007-3.

[9]

I. Ekeland, A perturbation theory near convex Hamiltonian systems, J. Differential Equations, 50 (1983), 407-440. doi: 10.1016/0022-0396(83)90069-4.

[10]

R. Filippucci, P. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177. doi: 10.1016/j.matpur.2008.09.008.

[11]

N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 321-330.

[12]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

[13]

A. Kristály, V. Rădulescu and Cs. Varga, "Variational Principles in Mathematical Physics, Geometry, and Economics. Qualitative Analysis of Nonlinear Equations and Unilateral Problems," Encyclopedia of Mathematics and its Applications, 136, Cambridge University Press, Cambridge, 2010.

[14]

E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., 19 (1969/1070), 609-623.

[15]

S. A. Marano and D. Motreanu, Existence of two nontrivial solutions for a class of elliptic eigenvalue problems, Arch. Math. (Basel), 75 (2000), 53-58.

[16]

R. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. doi: 10.1016/0040-9383(66)90013-9.

[17]

R. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. doi: 10.1090/S0002-9904-1964-11062-4.

[18]

P. Pucci and V. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: A mathematical survey, Boll. Unione Mat. Ital., IX (2010), 543-584.

[19]

P. Pucci and J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal., 59 (1984), 185-210. doi: 10.1016/0022-1236(84)90072-7.

[20]

P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985), 142-149. doi: 10.1016/0022-0396(85)90125-1.

[21]

P. Pucci and J. Serrin, The structure of the critical set in the mountain pass theorem, Trans. Amer. Math. Soc., 299 (1987), 115-132. doi: 10.1090/S0002-9947-1987-0869402-1.

[22]

V. Rădulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods," Contemporary Mathematics and Its Applications, 6, Hindawi Publishing Corporation, New York, 2008.

[23]

V. Rădulescu, Remarks on a limiting case in the treatment of nonlinear problems with mountain pass geometry, Universitatis Babes-Bolyai Mathematica, LV (2010), 99-106.

[24]

J. Toland, A duality principle for nonconvex optimisation and the calculus of variations, Arch. Rational Mech. Anal., 71 (1979), 41-61. doi: 10.1007/BF00250669.

[25]

X. M. Zheng, Un résultat de non-existence de solution positive pour une équation elliptique, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 91-96.

[1]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[2]

Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1691-1706. doi: 10.3934/dcds.2017070

[3]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[4]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[5]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[6]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[7]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[8]

Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785

[9]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[10]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[11]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[12]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[13]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Maicon Sônego. Stable solution induced by domain geometry in the heat equation with nonlinear boundary conditions on surfaces of revolution. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5981-5988. doi: 10.3934/dcdsb.2019116

[16]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[17]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[18]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 79-93. doi: 10.3934/dcdss.2021030

[19]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[20]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]