-
Previous Article
Pointwise estimates for solutions of singular quasi-linear parabolic equations
- DCDS-S Home
- This Issue
-
Next Article
Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities
On a structure of the fixed point set of homogeneous maps
1. | Department of Mathematics |
2. | Bar-Ilan University |
3. | Ramat-Gan, 52900 |
References:
[1] |
Bull. London Math. Soc., 13 (1981), 412-414.
doi: 10.1112/blms/13.5.412. |
[2] | |
[3] |
Comm. Algebra, 31 (2003), 4571-4609.
doi: 10.1081/AGB-120022810. |
[4] |
"Proc. Edinburgh Math. Soc." (2), 55, Issue 3, (2012), 577-589. |
[5] | |
[6] |
Bull. London Math. Soc., 36 (2004), 378-382.
doi: 10.1112/S0024609303002820. |
[7] |
Second edition, in "Ergebnisse der Mathematik und ihrer Grenzgebiete," Springer-Verlag, 2 1998.
doi: 10.1007/978-1-4612-1700-8. |
[8] | |
[9] |
J. Dyn. Diff. Equat., 21 (2009), 487-499.
doi: 10.1007/s10884-009-9141-x. |
[10] | |
[11] |
J. Amer. Math. Soc., 6 (1993), 459-501.
doi: 10.2307/2152805. |
[12] |
Topological Methods in Nonlinear Analysis, 19 (2002), 257-273. |
[13] | |
[14] |
Bull. London Math. Soc., 11 (1979), 177-183.
doi: 10.1112/blms/11.2.177. |
show all references
References:
[1] |
Bull. London Math. Soc., 13 (1981), 412-414.
doi: 10.1112/blms/13.5.412. |
[2] | |
[3] |
Comm. Algebra, 31 (2003), 4571-4609.
doi: 10.1081/AGB-120022810. |
[4] |
"Proc. Edinburgh Math. Soc." (2), 55, Issue 3, (2012), 577-589. |
[5] | |
[6] |
Bull. London Math. Soc., 36 (2004), 378-382.
doi: 10.1112/S0024609303002820. |
[7] |
Second edition, in "Ergebnisse der Mathematik und ihrer Grenzgebiete," Springer-Verlag, 2 1998.
doi: 10.1007/978-1-4612-1700-8. |
[8] | |
[9] |
J. Dyn. Diff. Equat., 21 (2009), 487-499.
doi: 10.1007/s10884-009-9141-x. |
[10] | |
[11] |
J. Amer. Math. Soc., 6 (1993), 459-501.
doi: 10.2307/2152805. |
[12] |
Topological Methods in Nonlinear Analysis, 19 (2002), 257-273. |
[13] | |
[14] |
Bull. London Math. Soc., 11 (1979), 177-183.
doi: 10.1112/blms/11.2.177. |
[1] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure and Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[2] |
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042 |
[3] |
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 |
[4] |
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 |
[5] |
Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557 |
[6] |
Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761 |
[7] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[8] |
Jacek Banasiak, Aleksandra Puchalska. Generalized network transport and Euler-Hille formula. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 1873-1893. doi: 10.3934/dcdsb.2018185 |
[9] |
José Natário. An elementary derivation of the Montgomery phase formula for the Euler top. Journal of Geometric Mechanics, 2010, 2 (1) : 113-118. doi: 10.3934/jgm.2010.2.113 |
[10] |
Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 |
[11] |
Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 |
[12] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 |
[13] |
Francisco Crespo, Sebastián Ferrer. On the extended Euler system and the Jacobi and Weierstrass elliptic functions. Journal of Geometric Mechanics, 2015, 7 (2) : 151-168. doi: 10.3934/jgm.2015.7.151 |
[14] |
Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345 |
[15] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[16] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[17] |
Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121 |
[18] |
Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011 |
[19] |
Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043 |
[20] |
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2583-2589. doi: 10.3934/dcds.2012.32.2583 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]