-
Previous Article
Topology and homoclinic trajectories of discrete dynamical systems
- DCDS-S Home
- This Issue
-
Next Article
Iterative methods for approximating fixed points of Bregman nonexpansive operators
Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential
1. | Institut de Recherche en Mathmatique et Physique |
2. | Universit Catholique de Louvain, chemin du Cyclotron, 2 |
3. | B-1348 Louvain-la-Neuve |
References:
[1] |
J. Difference Equations Applic., 14 (2008), 1099-1118.
doi: 10.1080/10236190802332290. |
[2] |
J. Math. Anal. Appl., 330 (2007), 1002-1015.
doi: 10.1016/j.jmaa.2006.07.104. |
[3] | |
[4] |
Ann. Inst. Henri-Poincaré. Anal. non Linéaire, 5 (1989), 259-281. |
[5] |
in "Variational Problems" (eds. H. Berestycki, J. M. Coron and I. Ekeland) Birkhäuser, Basel, (1990), 95-104. |
[6] |
J. London Math. Soc. (2), 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[7] |
Nonlinear Anal., 55 (2003), 969-983.
doi: 10.1016/j.na.2003.07.019. |
[8] |
Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[9] |
J. Differential Equations, 82 (1989), 372-385.
doi: 10.1016/0022-0396(89)90139-3. |
[10] | |
[11] |
Discrete Continuous Dynamical Systems, 32 (2012), 89-111.
doi: 10.3934/dcds.2012.32.4015. |
[12] |
Nonlinear Anal., 75 (2012), 4672-4687.
doi: 10.1016/j.na.2011.11.018. |
[13] | |
[14] |
Commun. Contemp. Math., 13 (2011), 863-883.
doi: 10.1142/S0219199711004488. |
[15] | |
[16] |
Trans. Amer. Math. Soc., 310 (1988), 303-311.
doi: 10.2307/2001123. |
[17] | |
[18] | |
[19] |
Nonlinear Anal., 15 (1990), 725-739.
doi: 10.1016/0362-546X(90)90089-Y. |
[20] |
Discrete Continuous Dynamical Systems, 15 (2006), 939-950.
doi: 10.3934/dcds.2006.15.939. |
[21] |
ANZIAM J., 47 (2005), 89-102.
doi: 10.1017/S1446181100009792. |
show all references
References:
[1] |
J. Difference Equations Applic., 14 (2008), 1099-1118.
doi: 10.1080/10236190802332290. |
[2] |
J. Math. Anal. Appl., 330 (2007), 1002-1015.
doi: 10.1016/j.jmaa.2006.07.104. |
[3] | |
[4] |
Ann. Inst. Henri-Poincaré. Anal. non Linéaire, 5 (1989), 259-281. |
[5] |
in "Variational Problems" (eds. H. Berestycki, J. M. Coron and I. Ekeland) Birkhäuser, Basel, (1990), 95-104. |
[6] |
J. London Math. Soc. (2), 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[7] |
Nonlinear Anal., 55 (2003), 969-983.
doi: 10.1016/j.na.2003.07.019. |
[8] |
Springer, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[9] |
J. Differential Equations, 82 (1989), 372-385.
doi: 10.1016/0022-0396(89)90139-3. |
[10] | |
[11] |
Discrete Continuous Dynamical Systems, 32 (2012), 89-111.
doi: 10.3934/dcds.2012.32.4015. |
[12] |
Nonlinear Anal., 75 (2012), 4672-4687.
doi: 10.1016/j.na.2011.11.018. |
[13] | |
[14] |
Commun. Contemp. Math., 13 (2011), 863-883.
doi: 10.1142/S0219199711004488. |
[15] | |
[16] |
Trans. Amer. Math. Soc., 310 (1988), 303-311.
doi: 10.2307/2001123. |
[17] | |
[18] | |
[19] |
Nonlinear Anal., 15 (1990), 725-739.
doi: 10.1016/0362-546X(90)90089-Y. |
[20] |
Discrete Continuous Dynamical Systems, 15 (2006), 939-950.
doi: 10.3934/dcds.2006.15.939. |
[21] |
ANZIAM J., 47 (2005), 89-102.
doi: 10.1017/S1446181100009792. |
[1] |
J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141 |
[2] |
Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133 |
[3] |
Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134 |
[4] |
Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015 |
[5] |
Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015 |
[6] |
Dmitry Treschev. Oscillator and thermostat. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693 |
[7] |
János Karsai, John R. Graef. Attractivity properties of oscillator equations with superlinear damping. Conference Publications, 2005, 2005 (Special) : 497-504. doi: 10.3934/proc.2005.2005.497 |
[8] |
Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure and Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029 |
[9] |
Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 |
[10] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[11] |
John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533 |
[12] |
R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211 |
[13] |
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515 |
[14] |
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69 |
[15] |
Enrico Bernardi, Alberto Lanconelli. Stochastic perturbation of a cubic anharmonic oscillator. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2563-2585. doi: 10.3934/dcdsb.2021148 |
[16] |
Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024 |
[17] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[18] |
Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593 |
[19] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2117-2138. doi: 10.3934/cpaa.2021060 |
[20] |
Anna Cima, Armengol Gasull, Francesc Mañosas. Global linearization of periodic difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1575-1595. doi: 10.3934/dcds.2012.32.1575 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]