Citation: |
[1] |
H. Abels, Bounded imaginary powers and $H^\infty$-calculus of the Stokes operator in unbounded domains, in " Nonlinear Elliptic and Parabolic Problems" (eds. M. Chipot and J. Escher), Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005), 1-15.doi: 10.1007/3-7643-7385-7_1. |
[2] |
R. A. Adams and J. J. Fournier, "Sobolev Spaces," $2^{nd}$ edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003. |
[3] |
B. Desjardins, E. Dormy and E. Grenier, Stability of mixed Ekman-Hartmann boundary layers, Nonlinearity, 12 (1999), 181-199.doi: 10.1088/0951-7715/12/2/001. |
[4] |
B. Desjardins and E. Grenier, Linear instability implies nonlinear instability for various types of viscous boundary layers, Ann. I. H. Poincaré Anal. Non Linéaire, 20 (2003), 87-106.doi: 10.1016/S0294-1449(02)00009-4. |
[5] |
J. Diestel and J. J. Uhl, Jr., "Vector Measures," Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. |
[6] |
V. W. Ekman, On the influence of the earth's rotation on ocean currents, Arkiv Matem. Astr. Fysik, 11 (1905), 1-52. |
[7] |
K.-J. Engel and R. Nagel, "A Short Course on Operator Semigroups," Universitext, Springer, New York, 2006. |
[8] |
Y. Giga, K. Inui, A. Mahalov and S. Matsui, Uniform local solvability of the Navier-Stokes equations with the Coriolis force, Methods Appl. Anal., 12 (2005), 381-394. |
[9] |
Y. Giga, K. Inui, A. Mahalov and J. Saal, Global solvability of the Navier-Stokes equations in spaces based on sum-closed frequency sets, Adv. Differ. Equ., 12 (2007), 721-736. |
[10] |
Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775-2791.doi: 10.1512/iumj.2008.57.3795. |
[11] |
Y. Giga and J. Saal, An approach to rotating boundary layers based on vector Radon measures, preprint. |
[12] |
L. Greenberg and M. Marletta, The Ekman flow and related problems: Spectral theory and numerical analysis, Math. Proc. Cambridge Philos. Soc., 136 (2004), 719-764.doi: 10.1017/S030500410300731X. |
[13] |
D. Henry, "Geometric Theory of Semilinear Parabolic Equations", Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981 |
[14] |
M. Hess, M. Hieber, A. Mahalov and J. Saal, Nonlinear stability of Ekman boundary layers, Bull. London Math. Soc., 42 (2010), 691-706.doi: 10.1112/blms/bdq029. |
[15] |
D. Lilly, On the instability of Ekman boundary flow, J. Atmospheric Sci., 23 (1966), 481-494. |
[16] |
M. Marletta and C. Tretter, Essential spectra of coupled systems of differential equations and applications in hydrodynamics, J. Diff. Eq., 243 (2007), 36-69.doi: 10.1016/j.jde.2007.09.002. |