\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane

Abstract Related Papers Cited by
  • We consider the two-dimensional motion of a Navier-Stokes liquid in the whole plane, under the action of a time-periodic body force $F$ of period $T$, and tending to a prescribed nonzero constant velocity at infinity. We show that if the magnitude of $F$, in suitable norm, is sufficiently small, there exists one and only one corresponding time-periodic flow of period $T$ in an appropriate function class.
    Mathematics Subject Classification: Primary: 35Q30, 76D; Secondary: 76M.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems," $2^{nd}$ edition, Springer Monographs in Mathematics, Springer-Verlag, New York, 2011.doi: 10.1007/978-0-387-09620-9.

    [2]

    G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions, Proc. Amer. Math. Soc., 141 (2013), 573-583.doi: 10.1090/S0002-9939-2012-11638-7.

    [3]

    G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions, Proc. Amer. Math. Soc., 141 (2013), 1313-1322.doi: 10.1090/S0002-9939-2012-11640-5.

    [4]

    G. P. Galdi and P. J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains, in "Topics in Nonlinear Analysis," Progress in Nonlin. Diff. Equations Appl., 35, Birkhäuser, Basel, (1999) 273-303.

    [5]

    G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body, Pacific J. Math., 223 (2006), 251-267.doi: 10.2140/pjm.2006.223.251.

    [6]

    G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force, Indiana Univ. Math. J., 58 (2009), 2805-2842.doi: 10.1512/iumj.2009.58.3758.

    [7]

    G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406.doi: 10.1007/s00205-004-0306-9.

    [8]

    K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data, Comm. Partial Differential Equations, 37 (2012), 1717-1753.doi: 10.1080/03605302.2012.708082.

    [9]

    M. KyedExistence and asymptotic properties of time-periodic solutions to the three dimensional Navier-Stokes equations, in preparation.

    [10]

    H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33-50.doi: 10.2748/tmj/1178225411.

    [11]

    J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, (French) [Interpolation spaces between Hilbert spaces and applications], Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2(50) (1958), 419-432.

    [12]

    P. Maremonti, Existence and stability of time periodic solutions of the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529.

    [13]

    P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, J. Math. Sci. (New York), 93 (1999), 719-746.doi: 10.1007/BF02366850.

    [14]

    L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa (3), 13 (1959), 115-162.

    [15]

    G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, (Italian) [Local theorems for the Navier-Stokes system and stability of steady-state solutions], Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397.

    [16]

    R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, in "Navier-Stokes Equations and Related Nonlinear Problems'' (ed. A. Sequeira) (Funchal, 1994), Plenum, New York, (1995), 63-73.

    [17]

    V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231.

    [18]

    Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains, Math. Z., 261 (2009), 597-615.doi: 10.1007/s00209-008-0341-6.

    [19]

    G. van Baalen and P. Wittwer, Time periodic solutions of the Navier-Stokes equations with nonzero constant boundary conditions at infinity, SIAM J. Math. Anal., 43 (2011), 1787-1809.doi: 10.1137/100809842.

    [20]

    M. Yamazaki, The Navier-Stokes equations in the weak$-L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675.doi: 10.1007/PL00004418.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return