Citation: |
[1] |
H. Abels, Bounded imaginary powers and $H_\infty$-calculus of the Stokes operator in unbounded domains, in "Nonlinear Elliptic and Parabolic Problems," Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005), 1-15.doi: 10.1007/3-7643-7385-7_1. |
[2] |
H. Abels, Nonstationary Stokes system with variable viscosity in bounded and unbounded domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 141-157.doi: 10.3934/dcdss.2010.3.141. |
[3] |
T. Akiyama, H. Kasai, Y. Shibata and M. Tsutsumi, On a resolvent estimate of a system of Laplace operators with perfect wall condition, Funkcial. Ekvac., 47 (2004), 361-394.doi: 10.1619/fesi.47.361. |
[4] |
J. Bolik and W. von Wahl, Estimating $\nablau$ in terms of div $u$, curl $u$ either $(\nu,u)$ or $\nu \times u$ and the topology, Math. Methods Appl. Sci., 20 (1997), 737-744.doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9. |
[5] |
M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded $H^{\infty}$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89. |
[6] |
T. G. Cowling, "Magnetohydrodynamics," Interscience Tracts on Physics and Astronomy, No. 4, Interscience Publishers, Inc., New York, 1957. |
[7] |
R. Denk, G. Dore, M. Hieber, J. Prüss and A. Venni, New thoughts on old results of R. T. Seeley, Math. Ann., 328 (2004), 545-583.doi: 10.1007/s00208-003-0493-y. |
[8] |
E. Dintelmann, M. Geissert and M. Hieber, Strong $L^p$-solutions to the Navier-Stokes flow past moving obstacles: The case of several obstacles and time dependent velocity, Trans. Amer. Math. Soc., 361 (2009), 653-669.doi: 10.1090/S0002-9947-08-04684-9. |
[9] |
R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114. |
[10] |
G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.doi: 10.1007/BF01163654. |
[11] |
M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006.doi: 10.1007/3-7643-7698-8. |
[12] |
P. C. Kunstmann, $H^{\infty}$-calculus for the Stokes operator on unbounded domains, Arch. Math. (Basel), 91 (2008), 178-186.doi: 10.1007/s00013-008-2621-0. |
[13] |
N. Kalton, P. Kunstmann and L. Weis, Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators, Math. Ann., 336 (2006), 747-801.doi: 10.1007/s00208-005-0742-3. |
[14] |
L. D. Landau and E. M. Lifschitz, "Lehrbuch der Theoretischen Physik ('Landau-Lifschitz'), Band VIII," Fourth edition, Elektrodynamik der Kontinua [Electrodynamics of continua], Translated from the second Russian edition by S. L. Drechsler, Translation edited by Gerd Lehmann, With a foreword by P. Ziesche and Lehmann, Akademie-Verlag, Berlin, 1985, |
[15] |
A. McIntosh, Operators which have an $H_\infty$ functional calculus, in "Miniconference on Operator Theory and Partial Differential Equations" (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, (1986), 210-231. |
[16] |
M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds, Trans. Amer. Math. Soc., 361 (2009), 3125-3157.doi: 10.1090/S0002-9947-08-04827-7. |
[17] |
A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on $L_q$-spaces, Math. Z., 244 (2003), 651-688. |
[18] |
R. T. Seeley, Complex powers of an elliptic operator, in "Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., (1967), 288-307. |
[19] |
R. Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math., 91 (1969), 889-920. |
[20] |
R. Seeley, Norms and domains of the complex powers $A_Bz$, Amer. J. Math., 93 (1971), 299-309. |
[21] |
J. A. Shercliff, "A Textbook of Magnetohydrodyamics," Pergamon Press, Oxford-New York-Paris, 1965. |
[22] |
L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann., 319 (2001), 735-758.doi: 10.1007/PL00004457. |
[23] |
Z. Yoshida and Y. Giga, On the Ohm-Navier-Stokes system in magnetohydrodynamics, J. Math. Phys., 24 (1983), 2860-2864.doi: 10.1063/1.525667. |