Citation: |
[1] |
J.-Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.doi: 10.1137/S0036141099359317. |
[2] |
D. Fang, M. Hieber and R. Zi, Global existence results for Oldroyd-B fluids on exterior domains with non small coupling parameter, preprint, (2011). |
[3] |
E. Fernández-Cara, F. Guillén and R. Ortega, Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 1-29. |
[4] |
P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems," Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.doi: 10.1007/978-0-387-09620-9. |
[5] |
V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms," Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986.doi: 10.1007/978-3-642-61623-5. |
[6] |
C. Guillopé and J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Modél. Math. Anal. Numér. 24 (1990), 369-401. |
[7] |
C. Guillopé and J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990), 849-869.doi: 10.1016/0362-546X(90)90097-Z. |
[8] |
C. Guillopé and J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type, RAIRO Model. Math. Anal. Numer., 24 (1990), 369-401. |
[9] |
M. Hieber, Y. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains, J. Diff. Equations, 252 (2012), 2617-2629.doi: 10.1016/j.jde.2011.09.001. |
[10] |
O. Kreml and M. Pokorný, On the local strong solutions to the FENE-dumbbell model, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 311-324.doi: 10.3934/dcdss.2010.3.311. |
[11] |
Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chinese Ann. Math. Ser. B, 27 (2006), 565-580.doi: 10.1007/s11401-005-0041-z. |
[12] |
Z. Lei, On 2D viscoelasticity with small strain, Arch. Rational Mech. Anal., 198 (2010), 13-37.doi: 10.1007/s00205-010-0346-2. |
[13] |
Z. Lei, N. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341.doi: 10.1016/j.jde.2009.07.011. |
[14] |
Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the compressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.doi: 10.1137/040618813. |
[15] |
F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.doi: 10.1002/cpa.20074. |
[16] |
Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Rational Mech. Anal., 188 (2008), 371-398.doi: 10.1007/s00205-007-0089-x. |
[17] |
F. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.doi: 10.1002/cpa.20219. |
[18] |
P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.doi: 10.1142/S0252959900000170. |
[19] |
A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445-464. |
[20] |
L. Molinet and R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonl. Diff. Equ. Appl., 11 (2004), 349-359.doi: 10.1007/s00030-004-1073-x. |
[21] |
J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. Roy. Soc. London Ser. A, 245 (1958), 278-297. |
[22] |
R. Talhouk, Existence locale et unicité d'écoulement de fluids viscoélastiques dans des domains non bornés, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 87-92.doi: 10.1016/S0764-4442(99)80160-8. |