October  2013, 6(5): 1343-1353. doi: 10.3934/dcdss.2013.6.1343

On stability of a capillary liquid down an inclined plane

1. 

Dipartimento di Matematica, University of Ferrara, Via Macchiavelli, 35, 44121 Ferrara, Italy

Received  December 2011 Revised  February 2012 Published  March 2013

We consider capillary laminar fluid motions on an inclined plane and study spatially periodic surface waves with fixed periodicity on the line of maximum slope $\alpha_1$ and in the horizontal direction $\alpha_2$. Actually, we provide a sufficient condition on Reynolds and Weber numbers, and on the inclination angle, named condition (C), in order that the Poiseuille flow $(v_b,p_b,\Gamma_b)$ with upper flat free boundary $\Gamma_b$ and with periodicity conditions on the plane, is nonlinearly stable. Under condition (C), the perturbed surface $\Gamma_t$ is bounded for all time, and the free boundary Poiseuille flow is stable.
Citation: Mariarosaria Padula. On stability of a capillary liquid down an inclined plane. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1343-1353. doi: 10.3934/dcdss.2013.6.1343
References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574.

[2]

Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151. doi: 10.1007/PL00000966.

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71. doi: 10.1007/s00021-004-0104-z.

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331.

[5]

M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192. doi: 10.1080/00036811.2010.490527.

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., (). 

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965.

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628.

show all references

References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574.

[2]

Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151. doi: 10.1007/PL00000966.

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71. doi: 10.1007/s00021-004-0104-z.

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331.

[5]

M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192. doi: 10.1080/00036811.2010.490527.

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., (). 

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965.

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628.

[1]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[2]

D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure and Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197

[3]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations and Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[4]

Yves Frederix, Giovanni Samaey, Christophe Vandekerckhove, Ting Li, Erik Nies, Dirk Roose. Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 855-874. doi: 10.3934/dcdsb.2009.11.855

[5]

Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141

[6]

Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103

[7]

Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2145-2157. doi: 10.3934/dcdsb.2014.19.2145

[8]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[9]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1323-1343. doi: 10.3934/dcdsb.2021092

[10]

Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117

[11]

Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1269-1310. doi: 10.3934/dcds.2019055

[12]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[13]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[14]

Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209

[15]

Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

[16]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[17]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[18]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[19]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[20]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]