October  2013, 6(5): 1343-1353. doi: 10.3934/dcdss.2013.6.1343

On stability of a capillary liquid down an inclined plane

1. 

Dipartimento di Matematica, University of Ferrara, Via Macchiavelli, 35, 44121 Ferrara, Italy

Received  December 2011 Revised  February 2012 Published  March 2013

We consider capillary laminar fluid motions on an inclined plane and study spatially periodic surface waves with fixed periodicity on the line of maximum slope $\alpha_1$ and in the horizontal direction $\alpha_2$. Actually, we provide a sufficient condition on Reynolds and Weber numbers, and on the inclination angle, named condition (C), in order that the Poiseuille flow $(v_b,p_b,\Gamma_b)$ with upper flat free boundary $\Gamma_b$ and with periodicity conditions on the plane, is nonlinearly stable. Under condition (C), the perturbed surface $\Gamma_t$ is bounded for all time, and the free boundary Poiseuille flow is stable.
Citation: Mariarosaria Padula. On stability of a capillary liquid down an inclined plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1343-1353. doi: 10.3934/dcdss.2013.6.1343
References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574.  Google Scholar

[2]

Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151. doi: 10.1007/PL00000966.  Google Scholar

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71. doi: 10.1007/s00021-004-0104-z.  Google Scholar

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331.  Google Scholar

[5]

M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192. doi: 10.1080/00036811.2010.490527.  Google Scholar

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., ().   Google Scholar

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965.  Google Scholar

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628.  Google Scholar

show all references

References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574.  Google Scholar

[2]

Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151. doi: 10.1007/PL00000966.  Google Scholar

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71. doi: 10.1007/s00021-004-0104-z.  Google Scholar

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331.  Google Scholar

[5]

M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192. doi: 10.1080/00036811.2010.490527.  Google Scholar

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., ().   Google Scholar

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965.  Google Scholar

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628.  Google Scholar

[1]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[2]

D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure & Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197

[3]

Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations & Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007

[4]

Yves Frederix, Giovanni Samaey, Christophe Vandekerckhove, Ting Li, Erik Nies, Dirk Roose. Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 855-874. doi: 10.3934/dcdsb.2009.11.855

[5]

Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141

[6]

Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103

[7]

Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2145-2157. doi: 10.3934/dcdsb.2014.19.2145

[8]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[9]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[10]

Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1269-1310. doi: 10.3934/dcds.2019055

[11]

Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117

[12]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[13]

Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control & Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020

[14]

Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

[15]

Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799

[16]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[17]

Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233

[18]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[19]

Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks & Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655

[20]

Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]