October  2013, 6(5): 1371-1390. doi: 10.3934/dcdss.2013.6.1371

On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow

1. 

Departement of Mathematics, Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany, Germany

Received  November 2011 Revised  March 2012 Published  March 2013

Starting from Prandtl's (1945) turbulence model, we consider two systems of PDEs for the scalar functions $u$ and $k$ which characterize the stationary turbulent pipe-flow. This system is completed by a homogeneous Dirichlet condition on $u$, and homogeneuos Neumann or mixed boundary conditions on $k$, respectively. For these boundary value problems we prove the existence of weak solutions $(u,k)$ such that $k>0$ on a set of positive measure.
Citation: Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371
References:
[1]

G. K. Batchelor, "An Introduction to Fluid Mechanics," Cambridge Univ. Press, Cambridge, 1967.

[2]

S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, Math. Model. Num. Anal., 31 (1977), 845-870.

[3]

P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness, Nonlinear Anal., 68 (2008), 1462-1478. doi: 10.1016/j.na.2006.12.040.

[4]

P.-É. Druet and J. Naumann, On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities, Ann. Univ. Ferrara, 55 (2009), 67-87. doi: 10.1007/s11565-009-0062-8.

[5]

J. Fröhlich, "Large Eddy Simulation Turbulenter Strömungen," Teubner Verlag, Wiesbaden, 2006.

[6]

T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities, Nonlin. Anal., 52 (2003), 1051-1068. doi: 10.1016/S0362-546X(01)00890-2.

[7]

M. Jischa, "Konvektiver Impuls-, Wärme- und Stoffaustausch," Vieweg-Verlag, Braunschweig/Wiesbaden, 1982.

[8]

B. L. Launder and D. B. Spalding, "Lectures in Mathematical Models of Turbulence," Academic Press, London, 1972.

[9]

J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 413-441. doi: 10.1016/j.anihpc.2006.03.011.

[10]

J. Naumann, Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids, in "Nonlinear Elliptic and Parabolic Problems," Progress Nonl. Diff. Equs. Appl., 64, Birkhäuser, (2005), 373-390. doi: 10.1007/3-7643-7385-7_21.

[11]

J. Naumann, M. Pokorný and J. Wolf, On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating, Nonlin. Anal. Real World Appl., 13 (2012), 1600-1620. doi: 10.1016/j.nonrwa.2011.11.018.

[12]

H. Oertel, "Prandtl-Essentials of Fluid Mechanics," Third edition, Applied Mathematical Sciences, 158, Springer, New York, 2010.

[13]

S. B. Pope, "Turbulent Flows," Cambridge Univ. Press, Cambridge, 2006.

[14]

L. Prandtl, Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zeitschr. angew. Math. Mech., 5 (1925), 136-139.

[15]

L. Prandtl, Über die ausgebildete Turbulenz, in "Verhandl. II," Intern. Kongress Techn. Mech., Zürich 1926, Füßli-Verlag, Zürich, (1927), 62-75.

[16]

L. Prandtl, Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., 1 (1946), 6-19.

show all references

References:
[1]

G. K. Batchelor, "An Introduction to Fluid Mechanics," Cambridge Univ. Press, Cambridge, 1967.

[2]

S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients, Math. Model. Num. Anal., 31 (1977), 845-870.

[3]

P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness, Nonlinear Anal., 68 (2008), 1462-1478. doi: 10.1016/j.na.2006.12.040.

[4]

P.-É. Druet and J. Naumann, On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities, Ann. Univ. Ferrara, 55 (2009), 67-87. doi: 10.1007/s11565-009-0062-8.

[5]

J. Fröhlich, "Large Eddy Simulation Turbulenter Strömungen," Teubner Verlag, Wiesbaden, 2006.

[6]

T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities, Nonlin. Anal., 52 (2003), 1051-1068. doi: 10.1016/S0362-546X(01)00890-2.

[7]

M. Jischa, "Konvektiver Impuls-, Wärme- und Stoffaustausch," Vieweg-Verlag, Braunschweig/Wiesbaden, 1982.

[8]

B. L. Launder and D. B. Spalding, "Lectures in Mathematical Models of Turbulence," Academic Press, London, 1972.

[9]

J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 413-441. doi: 10.1016/j.anihpc.2006.03.011.

[10]

J. Naumann, Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids, in "Nonlinear Elliptic and Parabolic Problems," Progress Nonl. Diff. Equs. Appl., 64, Birkhäuser, (2005), 373-390. doi: 10.1007/3-7643-7385-7_21.

[11]

J. Naumann, M. Pokorný and J. Wolf, On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating, Nonlin. Anal. Real World Appl., 13 (2012), 1600-1620. doi: 10.1016/j.nonrwa.2011.11.018.

[12]

H. Oertel, "Prandtl-Essentials of Fluid Mechanics," Third edition, Applied Mathematical Sciences, 158, Springer, New York, 2010.

[13]

S. B. Pope, "Turbulent Flows," Cambridge Univ. Press, Cambridge, 2006.

[14]

L. Prandtl, Bericht über Untersuchungen zur ausgebildeten Turbulenz, Zeitschr. angew. Math. Mech., 5 (1925), 136-139.

[15]

L. Prandtl, Über die ausgebildete Turbulenz, in "Verhandl. II," Intern. Kongress Techn. Mech., Zürich 1926, Füßli-Verlag, Zürich, (1927), 62-75.

[16]

L. Prandtl, Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl., 1 (1946), 6-19.

[1]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[2]

Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks and Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029

[3]

Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695

[4]

Xiaoming Wang. On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 489-501. doi: 10.3934/dcdsb.2010.13.489

[5]

Baoquan Yuan, Guoquan Qin. A blowup criterion for the 2D $k$-$\varepsilon$ model equations for turbulent flows. Kinetic and Related Models, 2016, 9 (4) : 777-796. doi: 10.3934/krm.2016016

[6]

D.J. Georgiev, A. J. Roberts, D. V. Strunin. Nonlinear dynamics on centre manifolds describing turbulent floods: k-$\omega$ model. Conference Publications, 2007, 2007 (Special) : 419-428. doi: 10.3934/proc.2007.2007.419

[7]

Oleg V. Kaptsov, Alexey V. Schmidt. Reduction of three-dimensional model of the far turbulent wake to one-dimensional problem. Conference Publications, 2011, 2011 (Special) : 794-802. doi: 10.3934/proc.2011.2011.794

[8]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[9]

Andrew J. Majda, John Harlim, Boris Gershgorin. Mathematical strategies for filtering turbulent dynamical systems. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 441-486. doi: 10.3934/dcds.2010.27.441

[10]

Andrew J. Majda, Michal Branicki. Lessons in uncertainty quantification for turbulent dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3133-3221. doi: 10.3934/dcds.2012.32.3133

[11]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[12]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155

[13]

Luigi Roberti. The surface current of Ekman flows with time-dependent eddy viscosity. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2463-2477. doi: 10.3934/cpaa.2022064

[14]

Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control and Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002

[15]

Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multi-point equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 451-471. doi: 10.3934/dcdss.2010.3.451

[16]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[17]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[18]

Piotr Bizoń, Dominika Hunik-Kostyra, Dmitry Pelinovsky. Stationary states of the cubic conformal flow on $ \mathbb{S}^3 $. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 1-32. doi: 10.3934/dcds.2020001

[19]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[20]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]