-
Previous Article
Improvement of some anisotropic regularity criteria for the Navier--Stokes equations
- DCDS-S Home
- This Issue
-
Next Article
On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow
A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem
1. | Czech Academy of Sciences, Mathematical Institute, Žitná 25, 115 67 Prague 1 |
References:
[1] |
H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.
doi: 10.1007/s000210050018. |
[2] |
W. Borchers and H. Sohr, On the equations rot $v=g$ and div $u=f$ with zero boundary conditions, Hokkaido Math. J., 19 (1990), 67-87. |
[3] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. on Pure and Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[4] |
L. Iskauriaza, G. Serëgin and V. Šverák, $L_{3,\infty}$-solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58 (2003), 211-250.
doi: 10.1070/RM2003v058n02ABEH000609. |
[5] |
R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.
doi: 10.1007/BF02588049. |
[6] |
R. Farwig, H. Kozono and H. Sohr, Energy-based regularity criteria for the Navier-Stokes equations, J. Math. Fluid Mech., 11 (2009), 428-442.
doi: 10.1007/s00021-008-0267-0. |
[7] |
R. Farwig, H. Kozono and H. Sohr, Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition, in "Parabolic and Navier-Stokes Equations, Part 1," Banach Center Publ., 81, Polish Acad. Sci. Inst. Math., Warsaw, (2008), 175-184.
doi: 10.4064/bc81-0-11. |
[8] |
C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9), 58 (1979), 339-368. |
[9] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems'," Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8. |
[10] |
G. P. Galdi, An Introduction to the Navier-Stokes initial-boundary value problem, in "Fundamental Directions in Mathematical Fluid Mechanics" (eds. G. P. Galdi, J. Heywood and R. Rannacher), Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, (2000), 1-70. |
[11] |
E. Hopf, Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231. |
[12] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[13] |
H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations, Analysis, 16 (1996), 255-271. |
[14] |
H. Kozono, Uniqueness and regularity of weak solutions to the Navier-Stokes equations, in "Recent Topics on Mathematical Theory of Viscous Incompressible Fluid" (Tsukuba, 1996), Lecture Notes in Num. and Appl. Anal., 16, Kinokuniya, Tokyo, (1998), 161-208. |
[15] |
J. Leray, Sur le mouvements d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[16] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. on Pure and Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. |
[17] |
A. Mahalov, B. Nicolaenko and G. Seregin, New sufficient conditions of local regularity for solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 10 (2008), 106-125.
doi: 10.1007/s00021-006-0220-z. |
[18] |
J. Nečas and J. Neustupa, New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 4 (2002), 237-256.
doi: 10.1007/s00021-002-8544-9. |
[19] |
J. Neustupa, Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^{\infty}(0,T; L^3(\Omega)^3)$, J. Math. Fluid Mech., 1 (1999), 309-325.
doi: 10.1007/s000210050013. |
[20] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations, in "Mathematical Fluid Mechanics" (eds. J. Neustupa and P. Penel), Advances in Mathematical Fluid Mechanics, Birkhauser, Basel, (2001), 237-265. |
[21] |
G. Seregin and V. Šverák, On smoothness of suitable weak solutions to the Navier-Stokes equations, J. of Math. Sci. (N. Y.), 130 (2005), 4884-4892.
doi: 10.1007/s10958-005-0383-9. |
[22] |
G. Seregin, On the local regularity for suitable weak solutions of the Navier-Stokes equations, Russian Math. Surveys, 62 (2007), 595-614.
doi: 10.1070/RM2007v062n03ABEH004415. |
[23] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187-195. |
[24] |
J. Wolf, A direct proof of the Caffarelli-Kohn-Nirenberg theorem, in "Parabolic and Navier-Stokes Equations, Part 2," Banach Center Publ., 81, Polish Acad. Sci. Inst. Math., Warsaw, (2008), 533-552.
doi: 10.4064/bc81-0-34. |
[25] |
J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, in "Advances in Mathematical Fluid Mechanics" (eds. R. Rannacher and A. Sequeira), Springer, Berlin, (2010), 613-630. |
show all references
References:
[1] |
H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 16-98.
doi: 10.1007/s000210050018. |
[2] |
W. Borchers and H. Sohr, On the equations rot $v=g$ and div $u=f$ with zero boundary conditions, Hokkaido Math. J., 19 (1990), 67-87. |
[3] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. on Pure and Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[4] |
L. Iskauriaza, G. Serëgin and V. Šverák, $L_{3,\infty}$-solutions of the Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58 (2003), 211-250.
doi: 10.1070/RM2003v058n02ABEH000609. |
[5] |
R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.
doi: 10.1007/BF02588049. |
[6] |
R. Farwig, H. Kozono and H. Sohr, Energy-based regularity criteria for the Navier-Stokes equations, J. Math. Fluid Mech., 11 (2009), 428-442.
doi: 10.1007/s00021-008-0267-0. |
[7] |
R. Farwig, H. Kozono and H. Sohr, Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin's condition, in "Parabolic and Navier-Stokes Equations, Part 1," Banach Center Publ., 81, Polish Acad. Sci. Inst. Math., Warsaw, (2008), 175-184.
doi: 10.4064/bc81-0-11. |
[8] |
C. Foiaş and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl. (9), 58 (1979), 339-368. |
[9] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I. Linearized Steady Problems'," Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8. |
[10] |
G. P. Galdi, An Introduction to the Navier-Stokes initial-boundary value problem, in "Fundamental Directions in Mathematical Fluid Mechanics" (eds. G. P. Galdi, J. Heywood and R. Rannacher), Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, (2000), 1-70. |
[11] |
E. Hopf, Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231. |
[12] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $\mathbbR^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.
doi: 10.1007/BF01174182. |
[13] |
H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations, Analysis, 16 (1996), 255-271. |
[14] |
H. Kozono, Uniqueness and regularity of weak solutions to the Navier-Stokes equations, in "Recent Topics on Mathematical Theory of Viscous Incompressible Fluid" (Tsukuba, 1996), Lecture Notes in Num. and Appl. Anal., 16, Kinokuniya, Tokyo, (1998), 161-208. |
[15] |
J. Leray, Sur le mouvements d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[16] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. on Pure and Appl. Math., 51 (1998), 241-257.
doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. |
[17] |
A. Mahalov, B. Nicolaenko and G. Seregin, New sufficient conditions of local regularity for solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 10 (2008), 106-125.
doi: 10.1007/s00021-006-0220-z. |
[18] |
J. Nečas and J. Neustupa, New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 4 (2002), 237-256.
doi: 10.1007/s00021-002-8544-9. |
[19] |
J. Neustupa, Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^{\infty}(0,T; L^3(\Omega)^3)$, J. Math. Fluid Mech., 1 (1999), 309-325.
doi: 10.1007/s000210050013. |
[20] |
J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations, in "Mathematical Fluid Mechanics" (eds. J. Neustupa and P. Penel), Advances in Mathematical Fluid Mechanics, Birkhauser, Basel, (2001), 237-265. |
[21] |
G. Seregin and V. Šverák, On smoothness of suitable weak solutions to the Navier-Stokes equations, J. of Math. Sci. (N. Y.), 130 (2005), 4884-4892.
doi: 10.1007/s10958-005-0383-9. |
[22] |
G. Seregin, On the local regularity for suitable weak solutions of the Navier-Stokes equations, Russian Math. Surveys, 62 (2007), 595-614.
doi: 10.1070/RM2007v062n03ABEH004415. |
[23] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187-195. |
[24] |
J. Wolf, A direct proof of the Caffarelli-Kohn-Nirenberg theorem, in "Parabolic and Navier-Stokes Equations, Part 2," Banach Center Publ., 81, Polish Acad. Sci. Inst. Math., Warsaw, (2008), 533-552.
doi: 10.4064/bc81-0-34. |
[25] |
J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes equations, in "Advances in Mathematical Fluid Mechanics" (eds. R. Rannacher and A. Sequeira), Springer, Berlin, (2010), 613-630. |
[1] |
Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053 |
[2] |
Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159 |
[3] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[4] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[5] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[6] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[7] |
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545 |
[8] |
Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141 |
[9] |
Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 |
[10] |
Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064 |
[11] |
Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299 |
[12] |
Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067 |
[13] |
Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081 |
[14] |
Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033 |
[15] |
Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087 |
[16] |
Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157 |
[17] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[18] |
Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151 |
[19] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[20] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]