Citation: |
[1] |
L. Badea, Schwarz methods for inequalities with contraction operators, J. Comp. Appl. Math., 215 (2008), 196-219.doi: 10.1016/j.cam.2007.04.004. |
[2] |
L. Badea, An additive Schwarz method for the constrained minimization of functionals in reflexive Banach spaces, in "Domain Decomposition Methods in Science and Engineering XVII" (eds. U. Langer, et al.), Lect. Notes Comput. Sci. Eng., 60, Springer, Berlin, (2008), 427-434.doi: 10.1007/978-3-540-75199-1_54. |
[3] |
L. Badea, Multigrid methods for variational inequalities, preprint series of the Institute of Mathematics of the Romanian Academy, 1 (2010). Available from: http://www.imar.ro/~lbadea/. |
[4] |
L. Badea, Multigrid methods with constraint level decomposition for variational inequalities, Ann. Acad. Rom. Sci. Ser. Math. Appl., 3 (2011), 300-331. |
[5] |
L. Badea, Multigrid methods with constraint level decomposition for variational inequalities, preprint series of the Institute of Mathematics of the Romanian Academy, 3 (2010). Available from: http://www.imar.ro/~lbadea/. |
[6] |
L. Badea and R. Krause, One- and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact, Numer. Math., 120 (2012), 573-599.doi: 10.1007/s00211-011-0423-y. |
[7] |
L. Badea and R. Krause, One- and two-level multiplicative Schwarz methods for variational and quasi-variational inequalities of the second kind: Part I - general convergence results, INS Preprint, No. 0804, Institute for Numerical Simulation, University of Bonn, (2008). |
[8] |
L. Badea, X.-C. Tai and J. Wang, Convergence rate analysis of a multiplicative Schwarz method for variational inequalities, SIAM J. Numer. Anal., 41 (2003), 1052-1073.doi: 10.1137/S0036142901393607. |
[9] |
A. Brandt and C. Cryer, Multigrid algorithms for the solution of linear complementary problems arising from free boundary problems, SIAM J. Sci. Stat. Comput., 4 (1983), 655-684.doi: 10.1137/0904046. |
[10] |
I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels," Collection Études Mathématiques, Dunod, Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974. |
[11] |
E. Gelman and J. Mandel, On multilevel iterative method for optimization problems, Math. Program., 48 (1990), 1-17.doi: 10.1007/BF01582249. |
[12] |
R. Glowinski, J.-L. Lions and R. Trémolières, "Analyse Numérique des Inéquations Variationnelles," Dunod, Paris, 1976. |
[13] |
C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems, J. Comput. Math., 27 (2009), 1-44. |
[14] |
W. Hackbusch and H.-D. Mittelmann, On multigrid methods for variational inequalities, Numer. Math., 42 (1983), 65-76.doi: 10.1007/BF01400918. |
[15] |
R. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal., 31 (1994), 301-323.doi: 10.1137/0731016. |
[16] |
R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. I, Numer. Math., 69 (1994), 167-184. |
[17] |
R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. II, Numer. Math., 72 (1996), 481-499.doi: 10.1007/s002110050178. |
[18] |
R. Kornhuber, "Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems," Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1997. |
[19] |
R. Kornhuber and H. Yserentant, Multilevel methods for elliptic problems on domains not resolved by the coarse grid, in "Domain Decomposition Methods in Scientific and Engineering Computing" (University Park, PA, 1993), Contemporary Mathematics, 180, Amer. Math. Soc., Providence, RI, (1994), 49-60.doi: 10.1090/conm/180/01956. |
[20] |
J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementary problems, Appl. Math. Opt., 11 (1984), 77-95.doi: 10.1007/BF01442171. |
[21] |
J. Mandel, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Paris Sér. I Math., 298 (1984), 469-472. |
[22] |
X.-C. Tai, Rate of convergence for some constraint decomposition methods for nonlinear variational inequalities, Numer. Math., 93 (2003), 755-786.doi: 10.1007/s002110200404. |
[23] |
X.-C. Tai and J. Xu, Global and uniform convergence of subspace correction methods for some convex optimization problems, Math. Comp., 71 (2002), 105-124.doi: 10.1090/S0025-5718-01-01311-4. |