Citation: |
[1] |
H. Altenbach, K. Naumenko and P. A. Zhilin, A direct approach to the formulation of constitutive equations for rods and shells, in "Shell Structures: Theory and Applications" (eds. W. Pietraszkiewicz and C. Szymczak), Taylor and Francis, London, (2006), 87-90. |
[2] |
M. Bîrsan, Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells, J. Elasticity, 90 (2008), 227-239.doi: 10.1007/s10659-007-9140-2. |
[3] |
M. Bîrsan and H. Altenbach, A mathematical study of the linear theory for orthotropic elastic simple shells, Math. Meth. Appl. Sci., 33 (2010), 1399-1413.doi: 10.1002/mma.1253. |
[4] |
M. Bîrsan and H. Altenbach, Theory of thin thermoelastic rods made of porous materials, Arch. Appl. Mech., 81 (2011), 1365-1391.doi: 10.1007/s00419-010-0490-z. |
[5] |
M. Bîrsan and H. Altenbach, The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods, Meccanica, 47 (2011), 789-794.doi: 10.1007/s11012-011-9477-2. |
[6] |
M. Bîrsan and T. Bîrsan, An inequality of Cauchy-Schwarz type with application in the theory of elastic rods, Libertas Mathematica, 31 (2011), 123-126. |
[7] |
H. Brezis, "Analyse Fonctionelle. Théorie et Applications," (French) [Functional Analysis: Theory and Applications], Collection Mathématiques Appliquées pour la Maîtrise, [Collection of Applied Mathematics for the Master's Degree], Masson, Paris, 1983. |
[8] |
G. Capriz, "Continua with Microstructure," Springer Tracts in Natural Philosophy, 35, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-3584-2. |
[9] |
G. Capriz and P. Podio-Guidugli, Materials with spherical structure, Arch. Rational Mech. Anal., 75 (1981), 269-279.doi: 10.1007/BF00250786. |
[10] |
P. G. Ciarlet, "Mathematical Elasticity, Vol. I. Three-Dimensional Elasticity," Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. |
[11] |
P. G. Ciarlet, "Mathematical Elasticity. Vol. III. Theory of Shells," Studies in Mathematics and its Applications, 29, North-Holland Publishing Co., Amsterdam, 2000. |
[12] |
P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity," Springer, Dordrecht, 2005. |
[13] |
E. Cosserat and F. Cosserat, "Théorie des Corps Déformables," (French) [Theory of deformable bodies], A. Herman et Fils, Paris, 1909. |
[14] |
S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125-147.doi: 10.1007/BF00041230. |
[15] |
M. A. Goodman and S. C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249-266.doi: 10.1007/BF00284326. |
[16] |
A. E. Green and P. M. Naghdi, On thermal effects in the theory of rods, Int. J. Solids Struct., 15 (1979), 829-853.doi: 10.1016/0020-7683(79)90053-2. |
[17] |
L. P. Lebedev, M. J. Cloud and V. A. Eremeyev, "Tensor Analysis with Applications in Mechanics," World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2010.doi: 10.1142/9789814313995. |
[18] |
A. I. Lurie, "Theory of Elasticity," Foundations of Engineering Mechanics, Springer, Berlin, 2005.doi: 10.1007/978-3-540-26455-2. |
[19] |
P. Neff, On Korn's first inequality with non-constant coefficients, Proc. Roy. Soc. Edinb. A, 132 (2002), 221-243.doi: 10.1017/S0308210500001591. |
[20] |
P. Neff, A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus, Math. Models Meth. Appl. Sci., 17 (2007), 363-392.doi: 10.1142/S0218202507001954. |
[21] |
J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.doi: 10.1007/BF00249363. |
[22] |
G. Panasenko, "Multi-scale Modelling for Structures and Composites," Springer, Dordrecht, 2005. |
[23] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[24] |
M. B. Rubin, "Cosserat Theories: Shells, Rods, and Points," Solid Mechanics and Its Applications, 79, Springer, Netherlands, 2000.doi: 10.1007/978-94-015-9379-3. |
[25] |
J. G. Simmonds, A simple nonlinear thermodynamic theory of arbitrary elastic beams, J. Elasticity, 81 (2005), 51-62.doi: 10.1007/s10659-005-9003-7. |
[26] |
V. A. Svetlitsky, "Statics of Rods," Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2000. |
[27] |
D. Tiba and R. Vodák, A general asymptotic model for Lipschitzian curved rods, Adv. Math. Sci. Appl., 15 (2005), 137-198. |
[28] |
I. I. Vrabie, "$C_0$-Semigroups and Applications," North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, 2003. |
[29] |
P. A. Zhilin, Nonlinear theory of thin rods, in "Advanced Problems in Mechanics" (eds. D.A. Indeitsev, E.A. Ivanova and A.M. Krivtsov), Vol. 2, Instit. Problems Mech. Eng. R.A.S. Publ., St. Petersburg, (2006), 227-249. |
[30] |
P. A. Zhilin, "Applied Mechanics: Theory of Thin Elastic Rods," (in Russian), Politekhn. Univ. Publ., St. Petersburg, 2007. |