\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On damping rates of dissipative KdV equations

Abstract Related Papers Cited by
  • We consider here different models of dissipative Korteweg-de Vries (KdV) equations on the torus. Using a proper wave function $\Gamma$, we compare numerically the long time behavior effects of the damping models and we propose a hierarchy between these models. We also introduce a method based on the solution of an inverse problem to rebuild a posteriori the damping operator using only samples of the solution.
    Mathematics Subject Classification: Primary: 35B40, 35Q53, 65M06, 65M32, 65M70; Secondary: 65L12, 15A29.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318.doi: 10.1007/s00332-002-0466-4.

    [2]

    M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278.doi: 10.1016/j.physd.2004.01.023.

    [3]

    J.-P. Chehab and G. Sadaka, Numerical study of a family of damped KdV equations, Communications on Pure and Applied Analysis,, 12 (2013), 519-546.doi: 10.3934/cpaa.2013.12.519.

    [4]

    M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with nonlocal viscous dispersive term, Discrete and Continuous Dynamical Systems, 27 (2010), 1473-1492.doi: 10.3934/dcds.2010.27.1473.

    [5]

    F. Dias and D. Dutykh, Viscous potentiel free-surface flows in a fluid layer of finite depth, C. R. Math. Acad. Sci. Paris, 345 (2007), 113-118.doi: 10.1016/j.crma.2007.06.007.

    [6]

    F. Dubois, Schemes available from: http://www.math.u-psud.fr/~fdubois/fractionnaire.html [source Fortran].

    [7]

    F. Dubois, A. Galucio and N. Point, "Introduction à la Dérivation Fractionnaire. Théorie et Applications," (in French), Ref AF510, Techniques de l'ingénieur, April, 2010.

    [8]

    F. Dubois, J.-F. Deü and A. Galucio, The $G^\alpha$-scheme for approximation of fractional derivatives: Application to the dynamics of dissipative systems, J. Vib. Control, 14 (2008), 1597-1605.doi: 10.1177/1077546307087427.

    [9]

    S. Dumont and J.-B. Duval, Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity, International Journal of Numerical Analysis and Modeling, to appear, (2012).

    [10]

    D. Dutykh, "Modélisation Mathématique des Tsunamis," (French) [Mathematical modeling of Tsunamis], Ph.D thesis, ENS Cachan, 2007.

    [11]

    D. Dutykh, Visco-potential free-surface flows and long wave modelling, European Journal of Mechanics B Fluids, 28 (2009), 430-443.doi: 10.1016/j.euromechflu.2008.11.003.

    [12]

    J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eq., 74 (1988), 369-390.doi: 10.1016/0022-0396(88)90010-1.

    [13]

    J.-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359.doi: 10.1006/jdeq.1994.1071.

    [14]

    O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644.

    [15]

    O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53.doi: 10.1006/jdeq.2001.4163.

    [16]

    J. L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195 (2006), 6011-6045.doi: 10.1016/j.cma.2005.10.010.

    [17]

    J. Guerrero, M. Raydan and M. Rojas, A hybrid optimization method for large-scale non-negative full regularization in image restoration, Inverse Problems in Science ad Engineering, to appear, (2012).doi: 10.1080/17415977.2012.720684.

    [18]

    C. Hirsch, "Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics," Butterworth-Heinemann, 2007.

    [19]

    C. Jordan, "Calculus of Finite Differences," 3rd edition, Chelsea Publishing Co., New York, 1965.

    [20]

    C. Laurent, L. Rosier and B.-Y. Zhang, Control stabilization of the Korterweg-de Vries equation in a periodic domain, Comm. PDE, 35 (2010), 707-744.doi: 10.1080/03605300903585336.

    [21]

    S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16-42.doi: 10.1016/0021-9991(92)90324-R.

    [22]

    A. Miranville and R. Temam, "Mathematical Modeling in Continuum Mechanics," Second edition, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511755422.

    [23]

    E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic wave with Landau damping, Physics of Fluids, 12 (1969), 2388-2394.doi: 10.1063/1.1692358.

    [24]

    E. Ott and R. N. Sudan, Damping of solitary waves, Physics of Fluids, 13 (1970), 1432-1435.doi: 10.1063/1.1693097.

    [25]

    A. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line, DCDS-B, 14 (2010), 1511-1535.doi: 10.3934/dcdsb.2010.14.1511.

    [26]

    G. Sadaka, "Etude Mathématique et Numérique d'Équations d'Ondes Aquatiques Amorties," Thèse de Doctorat, Université de Picardie Jules Verne, November, 2011.

    [27]

    Lloyd N. Trefethen, "Spectral Methods in MATLAB," Software, Environments, and Tools, 10, SIAM, Philadelphia, 2000.doi: 10.1137/1.9780898719598.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return