December  2013, 6(6): 1487-1506. doi: 10.3934/dcdss.2013.6.1487

On damping rates of dissipative KdV equations

1. 

LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, Pôle Scienti que, 33, rue Saint Leu, 80039 Amiens, France

2. 

LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, Pôle Scientifique, 33, rue Saint Leu, 80039 Amiens, France

Received  September 2012 Revised  September 2012 Published  April 2013

We consider here different models of dissipative Korteweg-de Vries (KdV) equations on the torus. Using a proper wave function $\Gamma$, we compare numerically the long time behavior effects of the damping models and we propose a hierarchy between these models. We also introduce a method based on the solution of an inverse problem to rebuild a posteriori the damping operator using only samples of the solution.
Citation: Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487
References:
[1]

J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318. doi: 10.1007/s00332-002-0466-4.

[2]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278. doi: 10.1016/j.physd.2004.01.023.

[3]

J.-P. Chehab and G. Sadaka, Numerical study of a family of damped KdV equations, Communications on Pure and Applied Analysis,, 12 (2013), 519-546. doi: 10.3934/cpaa.2013.12.519.

[4]

M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with nonlocal viscous dispersive term, Discrete and Continuous Dynamical Systems, 27 (2010), 1473-1492. doi: 10.3934/dcds.2010.27.1473.

[5]

F. Dias and D. Dutykh, Viscous potentiel free-surface flows in a fluid layer of finite depth, C. R. Math. Acad. Sci. Paris, 345 (2007), 113-118. doi: 10.1016/j.crma.2007.06.007.

[6]

F. Dubois, Schemes available from:, \url{http://www.math.u-psud.fr/~fdubois/fractionnaire.html} [source Fortran]., (). 

[7]

F. Dubois, A. Galucio and N. Point, "Introduction à la Dérivation Fractionnaire. Théorie et Applications," (in French), Ref AF510, Techniques de l'ingénieur, April, 2010.

[8]

F. Dubois, J.-F. Deü and A. Galucio, The $G^\alpha$-scheme for approximation of fractional derivatives: Application to the dynamics of dissipative systems, J. Vib. Control, 14 (2008), 1597-1605. doi: 10.1177/1077546307087427.

[9]

S. Dumont and J.-B. Duval, Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity, International Journal of Numerical Analysis and Modeling, to appear, (2012).

[10]

D. Dutykh, "Modélisation Mathématique des Tsunamis," (French) [Mathematical modeling of Tsunamis], Ph.D thesis, ENS Cachan, 2007.

[11]

D. Dutykh, Visco-potential free-surface flows and long wave modelling, European Journal of Mechanics B Fluids, 28 (2009), 430-443. doi: 10.1016/j.euromechflu.2008.11.003.

[12]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eq., 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1.

[13]

J.-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[14]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644.

[15]

O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163.

[16]

J. L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195 (2006), 6011-6045. doi: 10.1016/j.cma.2005.10.010.

[17]

J. Guerrero, M. Raydan and M. Rojas, A hybrid optimization method for large-scale non-negative full regularization in image restoration, Inverse Problems in Science ad Engineering, to appear, (2012). doi: 10.1080/17415977.2012.720684.

[18]

C. Hirsch, "Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics," Butterworth-Heinemann, 2007.

[19]

C. Jordan, "Calculus of Finite Differences," 3rd edition, Chelsea Publishing Co., New York, 1965.

[20]

C. Laurent, L. Rosier and B.-Y. Zhang, Control stabilization of the Korterweg-de Vries equation in a periodic domain, Comm. PDE, 35 (2010), 707-744. doi: 10.1080/03605300903585336.

[21]

S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16-42. doi: 10.1016/0021-9991(92)90324-R.

[22]

A. Miranville and R. Temam, "Mathematical Modeling in Continuum Mechanics," Second edition, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511755422.

[23]

E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic wave with Landau damping, Physics of Fluids, 12 (1969), 2388-2394. doi: 10.1063/1.1692358.

[24]

E. Ott and R. N. Sudan, Damping of solitary waves, Physics of Fluids, 13 (1970), 1432-1435. doi: 10.1063/1.1693097.

[25]

A. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line, DCDS-B, 14 (2010), 1511-1535. doi: 10.3934/dcdsb.2010.14.1511.

[26]

G. Sadaka, "Etude Mathématique et Numérique d'Équations d'Ondes Aquatiques Amorties," Thèse de Doctorat, Université de Picardie Jules Verne, November, 2011.

[27]

Lloyd N. Trefethen, "Spectral Methods in MATLAB," Software, Environments, and Tools, 10, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719598.

show all references

References:
[1]

J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318. doi: 10.1007/s00332-002-0466-4.

[2]

M. Cabral and R. Rosa, Chaos for a damped and forced KdV equation, Phys. D, 192 (2004), 265-278. doi: 10.1016/j.physd.2004.01.023.

[3]

J.-P. Chehab and G. Sadaka, Numerical study of a family of damped KdV equations, Communications on Pure and Applied Analysis,, 12 (2013), 519-546. doi: 10.3934/cpaa.2013.12.519.

[4]

M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with nonlocal viscous dispersive term, Discrete and Continuous Dynamical Systems, 27 (2010), 1473-1492. doi: 10.3934/dcds.2010.27.1473.

[5]

F. Dias and D. Dutykh, Viscous potentiel free-surface flows in a fluid layer of finite depth, C. R. Math. Acad. Sci. Paris, 345 (2007), 113-118. doi: 10.1016/j.crma.2007.06.007.

[6]

F. Dubois, Schemes available from:, \url{http://www.math.u-psud.fr/~fdubois/fractionnaire.html} [source Fortran]., (). 

[7]

F. Dubois, A. Galucio and N. Point, "Introduction à la Dérivation Fractionnaire. Théorie et Applications," (in French), Ref AF510, Techniques de l'ingénieur, April, 2010.

[8]

F. Dubois, J.-F. Deü and A. Galucio, The $G^\alpha$-scheme for approximation of fractional derivatives: Application to the dynamics of dissipative systems, J. Vib. Control, 14 (2008), 1597-1605. doi: 10.1177/1077546307087427.

[9]

S. Dumont and J.-B. Duval, Numerical investigation of asymptotical properties of solutions to models for waterwaves with non local viscosity, International Journal of Numerical Analysis and Modeling, to appear, (2012).

[10]

D. Dutykh, "Modélisation Mathématique des Tsunamis," (French) [Mathematical modeling of Tsunamis], Ph.D thesis, ENS Cachan, 2007.

[11]

D. Dutykh, Visco-potential free-surface flows and long wave modelling, European Journal of Mechanics B Fluids, 28 (2009), 430-443. doi: 10.1016/j.euromechflu.2008.11.003.

[12]

J.-M. Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time, J. Diff. Eq., 74 (1988), 369-390. doi: 10.1016/0022-0396(88)90010-1.

[13]

J.-M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Diff. Eq., 110 (1994), 356-359. doi: 10.1006/jdeq.1994.1071.

[14]

O. Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems, 6 (2000), 625-644.

[15]

O. Goubet and R. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations, 185 (2002), 25-53. doi: 10.1006/jdeq.2001.4163.

[16]

J. L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195 (2006), 6011-6045. doi: 10.1016/j.cma.2005.10.010.

[17]

J. Guerrero, M. Raydan and M. Rojas, A hybrid optimization method for large-scale non-negative full regularization in image restoration, Inverse Problems in Science ad Engineering, to appear, (2012). doi: 10.1080/17415977.2012.720684.

[18]

C. Hirsch, "Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics," Butterworth-Heinemann, 2007.

[19]

C. Jordan, "Calculus of Finite Differences," 3rd edition, Chelsea Publishing Co., New York, 1965.

[20]

C. Laurent, L. Rosier and B.-Y. Zhang, Control stabilization of the Korterweg-de Vries equation in a periodic domain, Comm. PDE, 35 (2010), 707-744. doi: 10.1080/03605300903585336.

[21]

S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16-42. doi: 10.1016/0021-9991(92)90324-R.

[22]

A. Miranville and R. Temam, "Mathematical Modeling in Continuum Mechanics," Second edition, Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511755422.

[23]

E. Ott and R. N. Sudan, Nonlinear theory of ion acoustic wave with Landau damping, Physics of Fluids, 12 (1969), 2388-2394. doi: 10.1063/1.1692358.

[24]

E. Ott and R. N. Sudan, Damping of solitary waves, Physics of Fluids, 13 (1970), 1432-1435. doi: 10.1063/1.1693097.

[25]

A. Pazoto and L. Rosier, Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line, DCDS-B, 14 (2010), 1511-1535. doi: 10.3934/dcdsb.2010.14.1511.

[26]

G. Sadaka, "Etude Mathématique et Numérique d'Équations d'Ondes Aquatiques Amorties," Thèse de Doctorat, Université de Picardie Jules Verne, November, 2011.

[27]

Lloyd N. Trefethen, "Spectral Methods in MATLAB," Software, Environments, and Tools, 10, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719598.

[1]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[2]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[3]

Brian Pigott. Polynomial-in-time upper bounds for the orbital instability of subcritical generalized Korteweg-de Vries equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 389-418. doi: 10.3934/cpaa.2014.13.389

[4]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[5]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[6]

Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control and Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45

[7]

M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22

[8]

Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021039

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[10]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[11]

Olivier Goubet. Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 625-644. doi: 10.3934/dcds.2000.6.625

[12]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[13]

Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509

[14]

Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655

[15]

Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021052

[16]

Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations and Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028

[17]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[18]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[19]

Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control and Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024

[20]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]