-
Previous Article
New results on the problem of the stabilization of equilibria for models of electrohydraulic servoactuators
- DCDS-S Home
- This Issue
-
Next Article
Structure of the space of 2D elasticity tensors
On the thermal stresses in anisotropic porous cylinders
1. | "Al.I. Cuza" University of Iaşi, Department of Mathematics, Blvd. Carol I, no. 11, 700506 Iaşi, Romania, Romania |
References:
[1] |
R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials, J. Elasticity, 39 (1995), 265-271.
doi: 10.1007/BF00041841. |
[2] |
E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity, Libertas Mathematica, 31 (2011), 147-162. |
[3] |
S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder, Acta. Mechanica, 34 (1979), 243-250.
doi: 10.1007/BF01227988. |
[4] |
S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity, Acta Mechanica, 94 (1992), 221-232.
doi: 10.1007/BF01176651. |
[5] |
S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes, Int. J. Engng. Sci., 35 (1997), 573-583. |
[6] |
S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125-147.
doi: 10.1007/BF00041230. |
[7] |
F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials, J. Elasticity, 47 (1997), 73-81.
doi: 10.1023/A:1007478322647. |
[8] |
C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131-148. |
[9] |
I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials, European Journal of Mechanics A Solids, 27 (2008), 1060-1074.
doi: 10.1016/j.euromechsol.2007.12.008. |
[10] |
I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407-421. |
[11] |
M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249-266.
doi: 10.1007/BF00284326. |
[12] |
D. Ieşan, On Saint-Venant's problem, Arch. Rational Mech. Anal., 91 (1986), 363-373.
doi: 10.1007/BF00282340. |
[13] |
D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica, 60 (1986), 67-89. |
[14] |
D. Ieşan, "Saint-Venant's Problem," Lecture Notes in Mathematics, 1279, Springer-Verlag, Berlin, 1987. |
[15] |
D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids," Pitman Research Notes in Mathematics Series, 293, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. |
[16] |
D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders, Int. J. Engng. Sci., 33 (1995), 1139-1151.
doi: 10.1016/0020-7225(94)00123-2. |
[17] |
D. Ieşan, "Thermoelastic Models of Continua," Solid Mechanics and its Applications, 118, Kluwer Academic Publishers Group, Dordrecht, 2004. |
[18] |
D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder, J. Elasticity, 87 (2007), 147-159.
doi: 10.1007/s10659-007-9101-9. |
[19] |
D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders, Journal of Thermal Stresses, 30 (2007), 145-164. |
[20] |
D. Ieşan, Thermal effects in orthotropic porous elastic beams, Z. Angew. Math. Phys., 60 (2009), 138-153.
doi: 10.1007/s00033-008-7144-9. |
[21] |
D. Ieşan, "Classical and Generalized Models of Elastic Rods," CRC Series: Modern Mechanics and Mathematics, CRC Press, Boca Raton, FL, 2009. |
[22] |
D. Ieşan, Deformation of porous Cosserat elastic bars, Int. J. Solids Struct., 48 (2010), 573-583. |
[23] |
D. Ieşan, Thermal stresses in Chiral elastic beams, J. Thermal Stresses, 34 (2011), 458-487. |
[24] |
J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.
doi: 10.1007/BF00249363. |
[25] |
A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders, Mathematics and Mechanics of Solids, 5 (2000), 31-40.
doi: 10.1177/108128650000500103. |
show all references
References:
[1] |
R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials, J. Elasticity, 39 (1995), 265-271.
doi: 10.1007/BF00041841. |
[2] |
E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity, Libertas Mathematica, 31 (2011), 147-162. |
[3] |
S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder, Acta. Mechanica, 34 (1979), 243-250.
doi: 10.1007/BF01227988. |
[4] |
S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity, Acta Mechanica, 94 (1992), 221-232.
doi: 10.1007/BF01176651. |
[5] |
S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes, Int. J. Engng. Sci., 35 (1997), 573-583. |
[6] |
S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125-147.
doi: 10.1007/BF00041230. |
[7] |
F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials, J. Elasticity, 47 (1997), 73-81.
doi: 10.1023/A:1007478322647. |
[8] |
C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131-148. |
[9] |
I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials, European Journal of Mechanics A Solids, 27 (2008), 1060-1074.
doi: 10.1016/j.euromechsol.2007.12.008. |
[10] |
I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407-421. |
[11] |
M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249-266.
doi: 10.1007/BF00284326. |
[12] |
D. Ieşan, On Saint-Venant's problem, Arch. Rational Mech. Anal., 91 (1986), 363-373.
doi: 10.1007/BF00282340. |
[13] |
D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica, 60 (1986), 67-89. |
[14] |
D. Ieşan, "Saint-Venant's Problem," Lecture Notes in Mathematics, 1279, Springer-Verlag, Berlin, 1987. |
[15] |
D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids," Pitman Research Notes in Mathematics Series, 293, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. |
[16] |
D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders, Int. J. Engng. Sci., 33 (1995), 1139-1151.
doi: 10.1016/0020-7225(94)00123-2. |
[17] |
D. Ieşan, "Thermoelastic Models of Continua," Solid Mechanics and its Applications, 118, Kluwer Academic Publishers Group, Dordrecht, 2004. |
[18] |
D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder, J. Elasticity, 87 (2007), 147-159.
doi: 10.1007/s10659-007-9101-9. |
[19] |
D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders, Journal of Thermal Stresses, 30 (2007), 145-164. |
[20] |
D. Ieşan, Thermal effects in orthotropic porous elastic beams, Z. Angew. Math. Phys., 60 (2009), 138-153.
doi: 10.1007/s00033-008-7144-9. |
[21] |
D. Ieşan, "Classical and Generalized Models of Elastic Rods," CRC Series: Modern Mechanics and Mathematics, CRC Press, Boca Raton, FL, 2009. |
[22] |
D. Ieşan, Deformation of porous Cosserat elastic bars, Int. J. Solids Struct., 48 (2010), 573-583. |
[23] |
D. Ieşan, Thermal stresses in Chiral elastic beams, J. Thermal Stresses, 34 (2011), 458-487. |
[24] |
J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.
doi: 10.1007/BF00249363. |
[25] |
A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders, Mathematics and Mechanics of Solids, 5 (2000), 31-40.
doi: 10.1177/108128650000500103. |
[1] |
E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189 |
[2] |
Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917 |
[3] |
Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177 |
[4] |
Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491 |
[5] |
Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89 |
[6] |
Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733 |
[7] |
Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems and Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49 |
[8] |
Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations and Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013 |
[9] |
Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171 |
[10] |
Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008 |
[11] |
Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042 |
[12] |
Timir Karmakar, Meraj Alam, G. P. Raja Sekhar. Analysis of Brinkman-Forchheimer extended Darcy's model in a fluid saturated anisotropic porous channel. Communications on Pure and Applied Analysis, 2022, 21 (3) : 845-865. doi: 10.3934/cpaa.2022001 |
[13] |
Hermann Gross, Sebastian Heidenreich, Mark-Alexander Henn, Markus Bär, Andreas Rathsfeld. Modeling aspects to improve the solution of the inverse problem in scatterometry. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 497-519. doi: 10.3934/dcdss.2015.8.497 |
[14] |
Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443 |
[15] |
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 |
[16] |
Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441 |
[17] |
Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial and Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99 |
[18] |
Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073 |
[19] |
Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015 |
[20] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]