December  2013, 6(6): 1621-1639. doi: 10.3934/dcdss.2013.6.1621

Non-local elasto-viscoplastic models with dislocations and non-Schmid effect

1. 

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei nr. 14, 010014 Bucharest, Romania, Romania

Received  June 2012 Revised  September 2012 Published  April 2013

We propose a non-local model with dislocation densities and non-Schmid effect in the finite elasto-plasticity framework, which accounts for the dissipation postulate formulated through a principle of the free energy imbalance. Our goal is to characterize the scalar plastic velocities and activation condition in order to be compatible with the principle of the imbalanced free energy. The activation condition is expressed in terms of the generalized resolved stress, which is dependent not only on the Mandel stress measure, but also on the gradient of the scalar dislocation density. We analyze numerically how the model behaves for a simple shear problem into a layer when only one slip system is activated.
Citation: Sanda Cleja-Ţigoiu, Raisa Paşcan. Non-local elasto-viscoplastic models with dislocations and non-Schmid effect. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1621-1639. doi: 10.3934/dcdss.2013.6.1621
References:
[1]

R. J. Asaro and J. R, Rice, Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25 (1977), 309-338. doi: 10.1016/0022-5096(77)90001-1.

[2]

L. Bortoloni and P. Cermelli, Dislocation patterns and work-hardening in crystalline plasticity, Journal of Elasticity, 76 (2004), 113-138. doi: 10.1007/s10659-005-0670-1.

[3]

P. Cermelli and M. E. Gurtin, Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations, International Journal of Solids and Structures, 39 (2002), 6281-6309. doi: 10.1016/S0020-7683(02)00491-2.

[4]

S. Cleja-Ţigoiu, Bifurcations of homogeneous deformations of the bar in finite elasto-plasticity, European Journal of Mechanics A Solids, 15 (1996), 761-786.

[5]

S. Cleja-Ţigoiu, Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part I: Constitutive framework, Mathematics and Mechanics of Solids, (2012), accepted. doi: 10.1177/1081286512439059.

[6]

S. Cleja-Ţigoiu, Material forces in finite elastoplasticity with continuously distributed dislocations, Int. J. Fracture, 147 (2007), 67-81.

[7]

S. Cleja-Ţigoiu, Elasto-plastic materials with lattice defects modeled by second order deformations with non-zero curvature, in "Recent Progress in the Mathematics of Defects," Springer, Dordrecht, (2011), 61-75.

[8]

S. Cleja-Ţigoiu and R. Paşcan, Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part II: Dislocation density, International Journal of the Physics and Mechanics of Solids, (2011), submitted.

[9]

S. Cleja-Ţigoiu and E. Soós, Elastoplastic models with relaxed configurations and internal state variables, Applied Mechanics Reviews, 43 (1990), 131-151. doi: 10.1115/1.3119166.

[10]

M. Dao and R. J. Asaro, Localized deformation modes and non-Schmid effects in crystalline solids. Part I. Critical conditions of localization, Mechanics of Materials, 23 (1996), 71-102. doi: 10.1016/0167-6636(96)00012-9.

[11]

P. Grudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52 (2004), 1379-1406. doi: 10.1016/j.jmps.2003.11.002.

[12]

M. E. Gurtin and L. Anand, The decomposition F=F$^e$F$^p$, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, Int. J. Plast., 21 (2005), 1686-1719.

[13]

P. Howard, "Partial Equations in Matlab 7.0," 2005. Available from: http://www.math.tamu.edu/~phoward/m308/matbasics.pdf.

[14]

M. Kuroda, Crystal plasticity model accounting for pressure dependence of yielding and plastic expansion, Scripta Materialia, 48 (2003), 605-610. doi: 10.1016/S1359-6462(02)00465-7.

[15]

J. Mandel, "Plasticité Classique et Viscoplasticité," Course held at the Department of Mechanics of Solids, September-October 1971, International Centre for Mechanical Sciences, Udine, Courses and Lectures, No. 97, Springer-Verlag, Vienna-New York, 1972.

[16]

G. W. Recktenwald, "Numerical Methods with Matlab," Prentice Hall, New Jersey, 2000.

[17]

C. Teodosiu, A dynamic theory of dislocations and its applications to the theory of the elastic- plastic, in "Fundamental Aspects of Dislocation Theory," Vol. II (eds. J. A. Simmons, R. de Witt and R. Bullough), Conference Proceedings, National Bureau of Standards, (1970), 837-876.

[18]

C. Teodosiu and F. Sidoroff, A physical theory of finite elasto-viscoplastic behaviour of single crystal, International Journal of Engineering Science, 14 (1976), 165-176.

show all references

References:
[1]

R. J. Asaro and J. R, Rice, Strain localization in ductile single crystals, J. Mech. Phys. Solids, 25 (1977), 309-338. doi: 10.1016/0022-5096(77)90001-1.

[2]

L. Bortoloni and P. Cermelli, Dislocation patterns and work-hardening in crystalline plasticity, Journal of Elasticity, 76 (2004), 113-138. doi: 10.1007/s10659-005-0670-1.

[3]

P. Cermelli and M. E. Gurtin, Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations, International Journal of Solids and Structures, 39 (2002), 6281-6309. doi: 10.1016/S0020-7683(02)00491-2.

[4]

S. Cleja-Ţigoiu, Bifurcations of homogeneous deformations of the bar in finite elasto-plasticity, European Journal of Mechanics A Solids, 15 (1996), 761-786.

[5]

S. Cleja-Ţigoiu, Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part I: Constitutive framework, Mathematics and Mechanics of Solids, (2012), accepted. doi: 10.1177/1081286512439059.

[6]

S. Cleja-Ţigoiu, Material forces in finite elastoplasticity with continuously distributed dislocations, Int. J. Fracture, 147 (2007), 67-81.

[7]

S. Cleja-Ţigoiu, Elasto-plastic materials with lattice defects modeled by second order deformations with non-zero curvature, in "Recent Progress in the Mathematics of Defects," Springer, Dordrecht, (2011), 61-75.

[8]

S. Cleja-Ţigoiu and R. Paşcan, Non-local elasto-viscoplastic models with dislocations in finite elasto-plasticity. Part II: Dislocation density, International Journal of the Physics and Mechanics of Solids, (2011), submitted.

[9]

S. Cleja-Ţigoiu and E. Soós, Elastoplastic models with relaxed configurations and internal state variables, Applied Mechanics Reviews, 43 (1990), 131-151. doi: 10.1115/1.3119166.

[10]

M. Dao and R. J. Asaro, Localized deformation modes and non-Schmid effects in crystalline solids. Part I. Critical conditions of localization, Mechanics of Materials, 23 (1996), 71-102. doi: 10.1016/0167-6636(96)00012-9.

[11]

P. Grudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids, 52 (2004), 1379-1406. doi: 10.1016/j.jmps.2003.11.002.

[12]

M. E. Gurtin and L. Anand, The decomposition F=F$^e$F$^p$, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, Int. J. Plast., 21 (2005), 1686-1719.

[13]

P. Howard, "Partial Equations in Matlab 7.0," 2005. Available from: http://www.math.tamu.edu/~phoward/m308/matbasics.pdf.

[14]

M. Kuroda, Crystal plasticity model accounting for pressure dependence of yielding and plastic expansion, Scripta Materialia, 48 (2003), 605-610. doi: 10.1016/S1359-6462(02)00465-7.

[15]

J. Mandel, "Plasticité Classique et Viscoplasticité," Course held at the Department of Mechanics of Solids, September-October 1971, International Centre for Mechanical Sciences, Udine, Courses and Lectures, No. 97, Springer-Verlag, Vienna-New York, 1972.

[16]

G. W. Recktenwald, "Numerical Methods with Matlab," Prentice Hall, New Jersey, 2000.

[17]

C. Teodosiu, A dynamic theory of dislocations and its applications to the theory of the elastic- plastic, in "Fundamental Aspects of Dislocation Theory," Vol. II (eds. J. A. Simmons, R. de Witt and R. Bullough), Conference Proceedings, National Bureau of Standards, (1970), 837-876.

[18]

C. Teodosiu and F. Sidoroff, A physical theory of finite elasto-viscoplastic behaviour of single crystal, International Journal of Engineering Science, 14 (1976), 165-176.

[1]

Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic and Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843

[2]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[3]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[4]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[5]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[6]

José A. Carrillo, Raluca Eftimie, Franca Hoffmann. Non-local kinetic and macroscopic models for self-organised animal aggregations. Kinetic and Related Models, 2015, 8 (3) : 413-441. doi: 10.3934/krm.2015.8.413

[7]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[8]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[9]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[10]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[11]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[12]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[13]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[14]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[15]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[16]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[17]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[18]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure and Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[19]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

[20]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]