December  2013, 6(6): 1641-1649. doi: 10.3934/dcdss.2013.6.1641

Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws

1. 

Université de Poitiers, Institut P', UPR CNRS 3346, Boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Cedex, France, France

2. 

21, rue du Hameau du Cherpe, 86280 Saint-Benoît, France

3. 

Université de Lomé, Département de Physique, Laboratoire sur l'Énergie Solaire, BP 1515, Lomé, Togo

4. 

Université Ibn Zohr, Faculté des Sciences, Département de Physique, Laboratoire d'Electronique, de Traitement de Signal et de Modélisation Physique, Cité Dakhla, BP 8106, 80000 Agadir, Morocco

Received  June 2012 Revised  September 2012 Published  April 2013

We analyze the relation between Géry de Saxcé's bipotentials representing non-associated constitutive laws and Fitzpatrick's functions representing maximal monotone multifunctions. Revisiting the model of elastic materials initiated by Robert Hooke, we illustrate that Fitzpatrick's representation of monotone operators coming from convex analysis provides a constructive method to discover the best bipotential for modelling an Implicit Standard Material.
Citation: Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641
References:
[1]

S. Bartz, H. H. Bauschke, J. M. Borwein, S. Reich and X. Wang, Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative, Nonlinear Analysis, 66 (2007), 1198-1223. doi: 10.1016/j.na.2006.01.013.  Google Scholar

[2]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, Journal of Convex Analysis, 15 (2008), 87-104.  Google Scholar

[3]

S. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (eds. S. P. Fitzpatrick and J. R. Giles) (Canberra, 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, 20, Australian National University, Canberra, (1988), 59-65.  Google Scholar

[4]

J. J. Moreau, "Fonctionnelles Convexes," Istituto poligrafico e Zecca dello stato S. p. A., Roma, 2003. Google Scholar

[5]

G. de Saxcé and Z. Q. Feng, New inequation and functional for contact with friction: the implicit standard material approach, International Journal Mechanics of Structures and Machines, 19 (1991), 301-325. doi: 10.1080/08905459108905146.  Google Scholar

[6]

G. de Saxcé and L. Bousshine, Implicit standard materials, in "Inelastic Behaviour of Structures Under Variable Repeated Loads-Direct Analysis Methods" (eds. D. Weichert and G. Maier), International Centre for Mechanical Sciences, 432, CISM Courses and Lectures, Springer, Wien, New York, 2002. Google Scholar

[7]

C. Vallée, C. Lerintiu, D. Fortuné, K. Atchonouglo and M. Ban, Representing a non associated constitutive law by a bipotential issued from a Fitzpatrick sequence, Archives of Mechanics (Arch. Mech. Stos.), 61 (2009), 325-340.  Google Scholar

show all references

References:
[1]

S. Bartz, H. H. Bauschke, J. M. Borwein, S. Reich and X. Wang, Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative, Nonlinear Analysis, 66 (2007), 1198-1223. doi: 10.1016/j.na.2006.01.013.  Google Scholar

[2]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, Journal of Convex Analysis, 15 (2008), 87-104.  Google Scholar

[3]

S. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (eds. S. P. Fitzpatrick and J. R. Giles) (Canberra, 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, 20, Australian National University, Canberra, (1988), 59-65.  Google Scholar

[4]

J. J. Moreau, "Fonctionnelles Convexes," Istituto poligrafico e Zecca dello stato S. p. A., Roma, 2003. Google Scholar

[5]

G. de Saxcé and Z. Q. Feng, New inequation and functional for contact with friction: the implicit standard material approach, International Journal Mechanics of Structures and Machines, 19 (1991), 301-325. doi: 10.1080/08905459108905146.  Google Scholar

[6]

G. de Saxcé and L. Bousshine, Implicit standard materials, in "Inelastic Behaviour of Structures Under Variable Repeated Loads-Direct Analysis Methods" (eds. D. Weichert and G. Maier), International Centre for Mechanical Sciences, 432, CISM Courses and Lectures, Springer, Wien, New York, 2002. Google Scholar

[7]

C. Vallée, C. Lerintiu, D. Fortuné, K. Atchonouglo and M. Ban, Representing a non associated constitutive law by a bipotential issued from a Fitzpatrick sequence, Archives of Mechanics (Arch. Mech. Stos.), 61 (2009), 325-340.  Google Scholar

[1]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[2]

Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[3]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[4]

Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations & Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004

[5]

Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021034

[6]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics & Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[7]

Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent. Networks & Heterogeneous Media, 2020, 15 (2) : 281-305. doi: 10.3934/nhm.2020013

[8]

Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021095

[9]

Radu Ioan Boţ, Christopher Hendrich. Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators. Inverse Problems & Imaging, 2016, 10 (3) : 617-640. doi: 10.3934/ipi.2016014

[10]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks & Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

[11]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

[12]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[13]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[14]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[15]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[16]

Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159

[17]

Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics & Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117

[18]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[19]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

[20]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (2)

[Back to Top]