December  2013, 6(6): 1641-1649. doi: 10.3934/dcdss.2013.6.1641

Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws

1. 

Université de Poitiers, Institut P', UPR CNRS 3346, Boulevard Marie et Pierre Curie, Téléport 2, BP 30179, 86962 Futuroscope Cedex, France, France

2. 

21, rue du Hameau du Cherpe, 86280 Saint-Benoît, France

3. 

Université de Lomé, Département de Physique, Laboratoire sur l'Énergie Solaire, BP 1515, Lomé, Togo

4. 

Université Ibn Zohr, Faculté des Sciences, Département de Physique, Laboratoire d'Electronique, de Traitement de Signal et de Modélisation Physique, Cité Dakhla, BP 8106, 80000 Agadir, Morocco

Received  June 2012 Revised  September 2012 Published  April 2013

We analyze the relation between Géry de Saxcé's bipotentials representing non-associated constitutive laws and Fitzpatrick's functions representing maximal monotone multifunctions. Revisiting the model of elastic materials initiated by Robert Hooke, we illustrate that Fitzpatrick's representation of monotone operators coming from convex analysis provides a constructive method to discover the best bipotential for modelling an Implicit Standard Material.
Citation: Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641
References:
[1]

S. Bartz, H. H. Bauschke, J. M. Borwein, S. Reich and X. Wang, Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative, Nonlinear Analysis, 66 (2007), 1198-1223. doi: 10.1016/j.na.2006.01.013.

[2]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, Journal of Convex Analysis, 15 (2008), 87-104.

[3]

S. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (eds. S. P. Fitzpatrick and J. R. Giles) (Canberra, 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, 20, Australian National University, Canberra, (1988), 59-65.

[4]

J. J. Moreau, "Fonctionnelles Convexes," Istituto poligrafico e Zecca dello stato S. p. A., Roma, 2003.

[5]

G. de Saxcé and Z. Q. Feng, New inequation and functional for contact with friction: the implicit standard material approach, International Journal Mechanics of Structures and Machines, 19 (1991), 301-325. doi: 10.1080/08905459108905146.

[6]

G. de Saxcé and L. Bousshine, Implicit standard materials, in "Inelastic Behaviour of Structures Under Variable Repeated Loads-Direct Analysis Methods" (eds. D. Weichert and G. Maier), International Centre for Mechanical Sciences, 432, CISM Courses and Lectures, Springer, Wien, New York, 2002.

[7]

C. Vallée, C. Lerintiu, D. Fortuné, K. Atchonouglo and M. Ban, Representing a non associated constitutive law by a bipotential issued from a Fitzpatrick sequence, Archives of Mechanics (Arch. Mech. Stos.), 61 (2009), 325-340.

show all references

References:
[1]

S. Bartz, H. H. Bauschke, J. M. Borwein, S. Reich and X. Wang, Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative, Nonlinear Analysis, 66 (2007), 1198-1223. doi: 10.1016/j.na.2006.01.013.

[2]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, Journal of Convex Analysis, 15 (2008), 87-104.

[3]

S. Fitzpatrick, Representing monotone operators by convex functions, in "Workshop/Miniconference on Functional Analysis and Optimization" (eds. S. P. Fitzpatrick and J. R. Giles) (Canberra, 1988), Proceedings of the Centre for Mathematical Analysis, Australian National University, 20, Australian National University, Canberra, (1988), 59-65.

[4]

J. J. Moreau, "Fonctionnelles Convexes," Istituto poligrafico e Zecca dello stato S. p. A., Roma, 2003.

[5]

G. de Saxcé and Z. Q. Feng, New inequation and functional for contact with friction: the implicit standard material approach, International Journal Mechanics of Structures and Machines, 19 (1991), 301-325. doi: 10.1080/08905459108905146.

[6]

G. de Saxcé and L. Bousshine, Implicit standard materials, in "Inelastic Behaviour of Structures Under Variable Repeated Loads-Direct Analysis Methods" (eds. D. Weichert and G. Maier), International Centre for Mechanical Sciences, 432, CISM Courses and Lectures, Springer, Wien, New York, 2002.

[7]

C. Vallée, C. Lerintiu, D. Fortuné, K. Atchonouglo and M. Ban, Representing a non associated constitutive law by a bipotential issued from a Fitzpatrick sequence, Archives of Mechanics (Arch. Mech. Stos.), 61 (2009), 325-340.

[1]

Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711

[2]

Augusto VisintiN. On the variational representation of monotone operators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046

[3]

Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181

[4]

Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations and Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004

[5]

Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2022, 11 (4) : 1001-1035. doi: 10.3934/eect.2021034

[6]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics and Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[7]

Svetlana Pastukhova, Valeria Chiadò Piat. Homogenization of multivalued monotone operators with variable growth exponent. Networks and Heterogeneous Media, 2020, 15 (2) : 281-305. doi: 10.3934/nhm.2020013

[8]

Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2873-2902. doi: 10.3934/jimo.2021095

[9]

Radu Ioan Boţ, Christopher Hendrich. Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators. Inverse Problems and Imaging, 2016, 10 (3) : 617-640. doi: 10.3934/ipi.2016014

[10]

Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002

[11]

C. Kopf. Symbol sequences and entropy for piecewise monotone transformations with discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 299-304. doi: 10.3934/dcds.2000.6.299

[12]

Felipe Alvarez, Juan Peypouquet. Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1109-1128. doi: 10.3934/dcds.2009.25.1109

[13]

Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295

[14]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[15]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial and Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[16]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[17]

Bálint Farkas, Luca Lorenzi. On a class of hypoelliptic operators with unbounded coefficients in $R^N$. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1159-1201. doi: 10.3934/cpaa.2009.8.1159

[18]

Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics and Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117

[19]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial and Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[20]

David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (2)

[Back to Top]