Citation: |
[1] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'' Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. |
[2] |
M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Analysis, 13 (2006), 151-167. |
[3] |
I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels,'' Dunod, Gauthier-Villars, Paris, 1974. |
[4] |
A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.doi: 10.1007/s00526-004-0267-8. |
[5] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam II (2005), 461-559. |
[6] |
A. Mielke, Differential, energetic and metric formulations for rate-independent processes, in "Nonlinear PDE's and Applications'' (eds: L. Ambrosio and G. Savaré), Lecture Notes, C. I. M. E. Summer School, Cetraro, Italy, (2008), 87-171, Springer, 2011. |
[7] |
A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.doi: 10.3934/dcds.2009.25.585. |
[8] |
A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var, Calc., 18 (2012), 36-80.doi: 10.1051/cocv/2010054.Published. |
[9] |
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering'' (eds. H.-D. Alber, R. M. Balean and R. Farwig), Aachen, Shaker-Verlag, (1999), 117-129. |
[10] |
A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7. |
[11] |
L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal., 41 (2009), 1340-1365.doi: 10.1137/090750809. |
[12] |
M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation, Adv. Calc. Var., 3 (2010), 149-212. |
[13] |
U. Stefanelli, A variational characterization of rate-independent evolution, Math. Nachr., 282 (2009), 1492-1512.doi: 10.1002/mana.200810803. |
[14] |
A. Visintin, "Differential Models of Hysteresis,'' Applied Mathematical Sciences, 111, Springer-Verlag, Berlin, 1994. |