Advanced Search
Article Contents
Article Contents

Young-measure quasi-static damage evolution: The nonconvex and the brittle cases

Abstract Related Papers Cited by
  • A rate-independent model for incomplete damage is considered, with nonconvex energy density, mixed boundary condition, and nonzero external load, both for non-brittle and brittle materials. An existence result for a Young measure quasi-static evolution is proved.
    Mathematics Subject Classification: Primary: 74B20, 74R20, 28A33; Secondary: 74R05, 49J45.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization,'' MPS/SIAM Series on Optimization, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006.


    J. F. Babadjian, A quasi-static evolution model for the interaction between fracture and damage, Arch. Rational Mech. Anal., 200 (2011), 945-1002.doi: 10.1007/s00205-010-0379-6.


    J. M. Ball, A version of the fundamental theoremfor Young measures, in "PDE's and Continuum Models of Phasetransitions (Nice, 1988)'', Lecture Notes in Physics, Springer-Verlag, Berlin, (1989), 207-215.


    G. Bouchitté, A. Mielke, and T. Roubíček, A complete-damage problem at small strains, ZAMP Z. Angew. Math. Phys., 60 (2009), 205-236.doi: 10.1007/s00033-007-7064-0.


    G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures, Netw. Heterog. Media, 2 (2007), 1-36.


    G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Globally stable quasi-static evolution in plasticitywith softening, Netw. Heterog. Media, 3 (2008), 567-614.


    G. Dal Maso, G. Francfort and R. Toader, Quasi-static crack growth in finite elasticity, Preprint SISSA, Trieste, 2004 (http://www.sissa.it/fa/).


    A. DeSimone, J. J. Marigo and L. Teresi, A damage mechanics approach to stress softening and its application to rubber, Eur. J. Mech. A, Solids, 20 (2001), 873-892.doi: 10.1016/S0997-7538(01)01171-8.


    E. De Souza Neto, D. Peric and D. Owen, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects, J. Mech. Phys. Solids, 42 (1994), 1533-1550.doi: 10.1016/0022-5096(94)90086-8.


    I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'' North Holland, Amsterdam, 1976. Translation ofAnalyse convexe et problèmes variationnels. Dunod, Paris, 1972.


    A. Fiaschi, A Young measure approach toquasi-static evolution for a class of material models with nonconvexelastic energies, ESAIM Control Optim. Calc. Var., 15 (2009), 245-278.doi: 10.1051/cocv:2008030.


    A. Fiaschi, Rate-independent phase transitions in elastic materials: a Young-measure approach, Netw. Heterog. Media, 5 (2010), 257-298.


    A. Fiaschi, D. Knees and U. Stefanelli, Young-measure qusi-static damage evolution, Arch. Rational Mech. Anal., 203 (2012), 415-453.doi: 10.1007/s00205-011-0474-3.


    A. Fiaschi, D. Knees and S. Reichelt, "Global Higher Integrability of Minimizers of Variational Problems with Mixed Boundary Conditions," WIAS Preprint 1664.


    I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition, Calc. Var. PDEs, 2 (1994), 283-313.


    G. Francfort and A. Garroni, A variational view of partial brittle damage evolution, Arch. Rational Mech. Anal., 182 (2006), 125-152.doi: 10.1007/s00205-006-0426-5.


    G. Francfor and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9.


    A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution, Arch. Rational Mech. Anal., 194 (2009), 585-609.doi: 10.1007/s00205-008-0174-9.


    M. Giaquinta and E. Giusti, Quasi-minima, Ann. Inst. H. Poincaré, Analyse non lineaire, 1 (1984), 79-107.


    E. Giusti, "Direct Methods in the Calculus of Variations,'' World Scientific Publishing Co., Inc., River Edge, NJ, 2003.


    K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.doi: 10.1007/BF01442860.


    Y. Hamiel, O. Katz, V. Lyakhovsky, Z. Reches and Y. Fialko, Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int., 167 (2006), 1005-1016.doi: 10.1111/j.1365-246X.2006.03126.x.


    Y. Hamiel, V. Lyakhovsky, S. Stanchits, G. Dresen and Y. Ben-Zion, Brittle deformation and damage-induced seismic wave anisotropy in rocks, Geophys. J. Int., 178 (2009), 901-909.doi: 10.1111/j.1365-246X.2009.04200.x.


    D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90.


    V. Lyakhovsky, Z. Reches, R. Weiberger and T. E. Scott, Nonlinear elastic behaviour of damaged rocks, Geophys. J. Int., 130 (1997), 157-166.doi: 10.1111/j.1365-246X.1997.tb00995.x.


    V. Lyakhovsky and Y. Ben-Zion, Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int., 172 (2008), 651-662.doi: 10.1111/j.1365-246X.2007.03652.x.


    A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Methods Appl. Sci, 16 (2006), 177-209.doi: 10.1142/S021820250600111X.


    A. Mielke, T. Roubíček and J. Zemam, Complete damage in elastic and viscoelastic media and its energetics, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1242-1253.doi: 10.1016/j.cma.2009.09.020.


    A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7.


    P. Pedregal, "Parametrized Measures and Variational Principles,'' Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser Verlag, Basel, 1997.


    M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, ZAMM Z. Angew. Math. Mech., 90 (2010), 88-112.doi: 10.1002/zamm.200900243.


    M. Valadier, Young measures, in "Methods of nonconvex analysis (Varenna,1989)'', Lecture Notes in Math., Springer-Verlag,Berlin, (1990), 152-188.

  • 加载中

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint