Citation: |
[1] |
H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization,'' MPS/SIAM Series on Optimization, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006. |
[2] |
J. F. Babadjian, A quasi-static evolution model for the interaction between fracture and damage, Arch. Rational Mech. Anal., 200 (2011), 945-1002.doi: 10.1007/s00205-010-0379-6. |
[3] |
J. M. Ball, A version of the fundamental theoremfor Young measures, in "PDE's and Continuum Models of Phasetransitions (Nice, 1988)'', Lecture Notes in Physics, Springer-Verlag, Berlin, (1989), 207-215. |
[4] |
G. Bouchitté, A. Mielke, and T. Roubíček, A complete-damage problem at small strains, ZAMP Z. Angew. Math. Phys., 60 (2009), 205-236.doi: 10.1007/s00033-007-7064-0. |
[5] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures, Netw. Heterog. Media, 2 (2007), 1-36. |
[6] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Globally stable quasi-static evolution in plasticitywith softening, Netw. Heterog. Media, 3 (2008), 567-614. |
[7] |
G. Dal Maso, G. Francfort and R. Toader, Quasi-static crack growth in finite elasticity, Preprint SISSA, Trieste, 2004 (http://www.sissa.it/fa/). |
[8] |
A. DeSimone, J. J. Marigo and L. Teresi, A damage mechanics approach to stress softening and its application to rubber, Eur. J. Mech. A, Solids, 20 (2001), 873-892.doi: 10.1016/S0997-7538(01)01171-8. |
[9] |
E. De Souza Neto, D. Peric and D. Owen, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects, J. Mech. Phys. Solids, 42 (1994), 1533-1550.doi: 10.1016/0022-5096(94)90086-8. |
[10] |
I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'' North Holland, Amsterdam, 1976. Translation ofAnalyse convexe et problèmes variationnels. Dunod, Paris, 1972. |
[11] |
A. Fiaschi, A Young measure approach toquasi-static evolution for a class of material models with nonconvexelastic energies, ESAIM Control Optim. Calc. Var., 15 (2009), 245-278.doi: 10.1051/cocv:2008030. |
[12] |
A. Fiaschi, Rate-independent phase transitions in elastic materials: a Young-measure approach, Netw. Heterog. Media, 5 (2010), 257-298. |
[13] |
A. Fiaschi, D. Knees and U. Stefanelli, Young-measure qusi-static damage evolution, Arch. Rational Mech. Anal., 203 (2012), 415-453.doi: 10.1007/s00205-011-0474-3. |
[14] |
A. Fiaschi, D. Knees and S. Reichelt, "Global Higher Integrability of Minimizers of Variational Problems with Mixed Boundary Conditions," WIAS Preprint 1664. |
[15] |
I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition, Calc. Var. PDEs, 2 (1994), 283-313. |
[16] |
G. Francfort and A. Garroni, A variational view of partial brittle damage evolution, Arch. Rational Mech. Anal., 182 (2006), 125-152.doi: 10.1007/s00205-006-0426-5. |
[17] |
G. Francfor and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9. |
[18] |
A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution, Arch. Rational Mech. Anal., 194 (2009), 585-609.doi: 10.1007/s00205-008-0174-9. |
[19] |
M. Giaquinta and E. Giusti, Quasi-minima, Ann. Inst. H. Poincaré, Analyse non lineaire, 1 (1984), 79-107. |
[20] |
E. Giusti, "Direct Methods in the Calculus of Variations,'' World Scientific Publishing Co., Inc., River Edge, NJ, 2003. |
[21] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., 283 (1989), 679-687.doi: 10.1007/BF01442860. |
[22] |
Y. Hamiel, O. Katz, V. Lyakhovsky, Z. Reches and Y. Fialko, Stable and unstable damage evolution in rocks with implications to fracturing of granite, Geophys. J. Int., 167 (2006), 1005-1016.doi: 10.1111/j.1365-246X.2006.03126.x. |
[23] |
Y. Hamiel, V. Lyakhovsky, S. Stanchits, G. Dresen and Y. Ben-Zion, Brittle deformation and damage-induced seismic wave anisotropy in rocks, Geophys. J. Int., 178 (2009), 901-909.doi: 10.1111/j.1365-246X.2009.04200.x. |
[24] |
D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90. |
[25] |
V. Lyakhovsky, Z. Reches, R. Weiberger and T. E. Scott, Nonlinear elastic behaviour of damaged rocks, Geophys. J. Int., 130 (1997), 157-166.doi: 10.1111/j.1365-246X.1997.tb00995.x. |
[26] |
V. Lyakhovsky and Y. Ben-Zion, Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Int., 172 (2008), 651-662.doi: 10.1111/j.1365-246X.2007.03652.x. |
[27] |
A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Methods Appl. Sci, 16 (2006), 177-209.doi: 10.1142/S021820250600111X. |
[28] |
A. Mielke, T. Roubíček and J. Zemam, Complete damage in elastic and viscoelastic media and its energetics, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1242-1253.doi: 10.1016/j.cma.2009.09.020. |
[29] |
A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7. |
[30] |
P. Pedregal, "Parametrized Measures and Variational Principles,'' Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser Verlag, Basel, 1997. |
[31] |
M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, ZAMM Z. Angew. Math. Mech., 90 (2010), 88-112.doi: 10.1002/zamm.200900243. |
[32] |
M. Valadier, Young measures, in "Methods of nonconvex analysis (Varenna,1989)'', Lecture Notes in Math., Springer-Verlag,Berlin, (1990), 152-188. |