February  2013, 6(1): 193-214. doi: 10.3934/dcdss.2013.6.193

Thermodynamics of perfect plasticity

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8

Received  April 2011 Revised  August 2011 Published  October 2012

Viscoelastic solids in Kelvin-Voigt rheology at small strains exhibiting also stress-driven Prandtl-Reuss perfect plasticity are considered quasistatic (i.e. inertia neglected) and coupled with heat-transfer equation through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Enthalpy transformation is used and existence of a weak solution is proved by an implicit suitably regularized time discretisation.
Citation: Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193
References:
[1]

S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM J. Numer. Anal., 50 (2012), 951-976.  Google Scholar

[2]

S. Bartels and T. Roubíček, Thermo-visco-plasticity at small strains, Zeitschrift angew. Math. Mech., 88 (2008), 735-754. doi: 10.1002/zamm.200800042.  Google Scholar

[3]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, Math. Modelling Numer. Anal., 45 (2011), 477-504. doi: 10.1051/m2an/2010063.  Google Scholar

[4]

L. Boccardo, A. Dall'aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. of Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169. doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[6]

K. Chełmiński, Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening, Math. Methods Appl. Sci., 24 (2001), 117-136.  Google Scholar

[7]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225. doi: 10.1007/s00205-004-0351-4.  Google Scholar

[8]

G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291. doi: 10.1007/s00205-005-0407-0.  Google Scholar

[9]

F. Ebobisse and B. D. Reddy, Some mathematical problems in perfect plasticity, Computer Meth. Appl. Mech. Engr., 193 (2004), 5071-5094. doi: 10.1016/j.cma.2004.07.002.  Google Scholar

[10]

G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies, J. reine u. angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.  Google Scholar

[11]

J. Frehse and J. Málek, Boundary regularity results for models of elasto-perfect plasticity, Math. Models Meth. Appl. Sci., 9 (1999), 1307-1321. doi: 10.1142/S0218202599000579.  Google Scholar

[12]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis I,II," Kluwer, Dordrecht, Part I: 1997, Part II: 2000. Google Scholar

[13]

P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity, Appl. Math., 43 (1998), 173-205. doi: 10.1023/A:1023224507448.  Google Scholar

[14]

G. A. Maughin, "The Thermomechanics of Plasticity and Fracture," Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9781139172400.  Google Scholar

[15]

A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559.  Google Scholar

[16]

A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Modelling Numer. Anal., 43 (2009), 399-428. doi: 10.1051/m2an/2009009.  Google Scholar

[17]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. PDE, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[18]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering" (Eds.: H.D. Alber, et al.), Shaker Ver., Aachen, (1999), 117-129. Google Scholar

[19]

A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189.  Google Scholar

[20]

T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005 (2nd edition 2012).  Google Scholar

[21]

T. Roubíček, Thermo-visco-elasticity at small strains with $L^1$-data, Quarterly Appl. Math., 67 (2009), 47-71.  Google Scholar

[22]

T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862. doi: 10.1002/mma.1069.  Google Scholar

[23]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[24]

P. M. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A, 286 (1978), 1201-1204.  Google Scholar

[25]

R. Temam, A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Archive Rat. Mech. Anal., 95 (1986), 137-183. doi: 10.1007/BF00281085.  Google Scholar

show all references

References:
[1]

S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM J. Numer. Anal., 50 (2012), 951-976.  Google Scholar

[2]

S. Bartels and T. Roubíček, Thermo-visco-plasticity at small strains, Zeitschrift angew. Math. Mech., 88 (2008), 735-754. doi: 10.1002/zamm.200800042.  Google Scholar

[3]

S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, Math. Modelling Numer. Anal., 45 (2011), 477-504. doi: 10.1051/m2an/2010063.  Google Scholar

[4]

L. Boccardo, A. Dall'aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. of Funct. Anal., 147 (1997), 237-258. doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169. doi: 10.1016/0022-1236(89)90005-0.  Google Scholar

[6]

K. Chełmiński, Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening, Math. Methods Appl. Sci., 24 (2001), 117-136.  Google Scholar

[7]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225. doi: 10.1007/s00205-004-0351-4.  Google Scholar

[8]

G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291. doi: 10.1007/s00205-005-0407-0.  Google Scholar

[9]

F. Ebobisse and B. D. Reddy, Some mathematical problems in perfect plasticity, Computer Meth. Appl. Mech. Engr., 193 (2004), 5071-5094. doi: 10.1016/j.cma.2004.07.002.  Google Scholar

[10]

G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies, J. reine u. angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.  Google Scholar

[11]

J. Frehse and J. Málek, Boundary regularity results for models of elasto-perfect plasticity, Math. Models Meth. Appl. Sci., 9 (1999), 1307-1321. doi: 10.1142/S0218202599000579.  Google Scholar

[12]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis I,II," Kluwer, Dordrecht, Part I: 1997, Part II: 2000. Google Scholar

[13]

P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity, Appl. Math., 43 (1998), 173-205. doi: 10.1023/A:1023224507448.  Google Scholar

[14]

G. A. Maughin, "The Thermomechanics of Plasticity and Fracture," Cambridge Univ. Press, Cambridge, 1992. doi: 10.1017/CBO9781139172400.  Google Scholar

[15]

A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559.  Google Scholar

[16]

A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Modelling Numer. Anal., 43 (2009), 399-428. doi: 10.1051/m2an/2009009.  Google Scholar

[17]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. PDE, 31 (2008), 387-416. doi: 10.1007/s00526-007-0119-4.  Google Scholar

[18]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering" (Eds.: H.D. Alber, et al.), Shaker Ver., Aachen, (1999), 117-129. Google Scholar

[19]

A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189.  Google Scholar

[20]

T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005 (2nd edition 2012).  Google Scholar

[21]

T. Roubíček, Thermo-visco-elasticity at small strains with $L^1$-data, Quarterly Appl. Math., 67 (2009), 47-71.  Google Scholar

[22]

T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862. doi: 10.1002/mma.1069.  Google Scholar

[23]

T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297. doi: 10.1137/080729992.  Google Scholar

[24]

P. M. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A, 286 (1978), 1201-1204.  Google Scholar

[25]

R. Temam, A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Archive Rat. Mech. Anal., 95 (1986), 137-183. doi: 10.1007/BF00281085.  Google Scholar

[1]

Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17

[2]

Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110

[3]

Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021

[4]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[5]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[6]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[7]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[8]

Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007

[9]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050

[10]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[11]

Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067

[12]

Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319

[13]

Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations & Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023

[14]

Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure & Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267

[15]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

[16]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[17]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[18]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[19]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[20]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]