- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization
Structural stability of rate-independent nonpotential flows
1. | Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38050, Povo di Trento, Italy |
  Fitzpatrick showed that any maximal monotone relation may be represented variationally. On this basis, an initial- and boundary-value problem associated to the equation above is here formulated as a null-minimization problem, without assuming $\gamma$ to be cyclically monotone. Existence of a solution $u\in H^1(0,T; H^1(\Omega))$ is proved, as well as its stability with respect to variations of the data, of the mapping $\gamma$, and of the domain $\Omega$.
References:
[1] |
S. Aizicovici and Q. Yan, Convergence theorems for abstract doubly nonlinear differential equations, Panamer. Math. J, 7 (1997), 1-17. |
[2] |
H. Attouch, "Variational Convergence for Functions and Operators," Pitman, Boston, 1984. |
[3] |
G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations, Differential Integral Equations, 6 (1993), 1161-117. |
[4] |
V. Barbu, Existence theorems for a class of two point boundary problems, J. Differential Equations, 17 (1975), 236-257. |
[5] |
V. Barbu, "Nonlinear Differential Equations of Monotone Types in Banach Spaces," Springer, Berlin, 2010. |
[6] |
V. Barbu and T. Precupanu, "Convexity and Optimization in Banach Spaces," Editura Academiei, Bucuresti, 1978. |
[7] |
A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals," Oxford University Press, Oxford, 1998. |
[8] |
H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland, Amsterdam, 1973. |
[9] |
H. Brezis, "Analyse Fonctionelle. Théorie et Applications," Masson, Paris, 1983. |
[10] |
H. Brezis and I. Ekeland, Un principe variationnel associé àcertaines équations parabo-liques.I. Le cas indépendant du temps, II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and 1197-1198. |
[11] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[12] |
M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal., 15 (2008), 87-104. |
[13] |
R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements, Set-Valued Analysis, 10 (2002), 297-316.
doi: 10.1023/A:1020639314056. |
[14] |
R. S. Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383.
doi: 10.1090/S0002-9939-03-07053-9. |
[15] |
P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl. Math., 9 (1992), 181-203.
doi: 10.1007/BF03167565. |
[16] |
P. Colli and A. Visintin, On a class of doubly nonlinear evolution problems, Communications in P. D. E. s, 15 (1990), 737-756. |
[17] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Boston, 1993. |
[18] |
G. Dal Maso and R. Toader, A model for the quasi-static growth or brittle fractures: Existence and approximation results, Arch. Rat. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[19] |
E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. |
[20] |
I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnelles," Dunod Gau-thier-Villars, Paris, 1974. |
[21] |
W. Fenchel, "Convex Cones, Sets, and Functions," Princeton Univ., 1953. |
[22] |
S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Minicon-ference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. |
[23] |
G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem: Existence and approximation results, J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[24] |
H. Gajewski, K. Gröger and K. Zacharias, "Nichtlineare Operator Gleichungen und Operator Differential Gleichungen," Akademie-Verlag, Berlin, 1974. |
[25] |
H. Gajewski and K. Zacharias, Über eine weitere Klasse nichtlinearer Differentialgleichungen im Hilbert-Raum, Math. Nachr., 57 (1973), 127-140.
doi: 10.1002/mana.19730570107. |
[26] |
N. Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl., 4 (2008), 107-135.
doi: 10.1007/s11784-008-0083-4. |
[27] |
N. Ghoussoub, "Selfdual Partial Differential Systems and Their Variational Principles," Springer, 2009. |
[28] |
N. Ghoussoub and L. Tzou, A variational principle for gradient flows, Math. Ann., 330 (2004), 519-549.
doi: 10.1007/s00208-004-0558-6. |
[29] |
W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis," Springer, New York, 1999. |
[30] |
A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems," North-Holland, Amsterdam, 1979. |
[31] |
H. Jian, On the homogenization of degenerate parabolic equations, Acta Math. Appl. Sinica, 16 (2000), 100-110.
doi: 10.1007/BF02670970. |
[32] |
M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis," Springer, Berlin 1989. (Russian ed. Nauka, Moscow 1983). |
[33] |
P. Krejčí, "Convexity, Hysteresis and Dissipation in Hyperbolic Equations," Gakkotosho, Tokyo, 1997. |
[34] |
J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires," Dunod, Paris, 1969. |
[35] |
J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Vols. I,II. Springer, Berlin 1972. (French edition: Dunod, Paris 1968). |
[36] |
J. E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. convex functions, Set-Valued Anal., 13 (2005), 21-46.
doi: 10.1007/s11228-004-4170-4. |
[37] |
J. E. Martinez-Legaz and B. F. Svaiter, Minimal convex functions bounded below by the duality product, Proc. Amer. Math. Soc., 136 (2008), 873-878.
doi: 10.1090/S0002-9939-07-09176-9. |
[38] |
J. E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2001), 243-247. |
[39] |
I. D. Mayergoyz, "Mathematical Models of Hysteresis and Their Applications," Elsevier, Amsterdam, 2003. |
[40] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[41] |
A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. |
[42] |
A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[43] |
A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations, 1 (2001), 19 pp. |
[44] |
B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. |
[45] |
J. P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules, C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. |
[46] |
J. P. Penot, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), 855-871.
doi: 10.1016/j.na.2004.05.018. |
[47] |
R. T. Rockafellar, A general correspondence between dual minimax problems and convex programs, Pacific J. Math., 25 (1968), 597-611. |
[48] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1969. |
[49] |
R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 97-169. |
[50] |
T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005. |
[51] |
G. Schimperna, A. Segatti and U. Stefanelli, Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst., 18 (2007), 15-38.
doi: 10.3934/dcds.2007.18.15. |
[52] |
T. Senba, On some nonlinear evolution equations, Funkcial. Ekvac., 29 (1986), 243-257. |
[53] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[54] |
U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, S. I. A. M. J. Control Optim., 8 (2008), 1615-1642.
doi: 10.1137/070684574. |
[55] |
A. Visintin, A phase transition problem with delay, Control and Cybernetics, 11 (1982), 5-18. |
[56] |
A. Visintin, "Differential Models of Hysteresis," Springer, Berlin, 1994. |
[57] |
A. Visintin, "Models of Phase Transitions," Birkhäuser, Boston, 1996. |
[58] |
A. Visintin, Quasilinear hyperbolic equations with hysteresis, Ann. Inst. H. Poincaré. Analyse non lineaire, 19 (2002), 451-476. |
[59] |
A. Visintin, Maxwell's equations with vector hysteresis, Arch. Rat. Mech. Anal., 175 (2005), 1-38.
doi: 10.1007/s00205-004-0333-6. |
[60] |
A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, Adv. Math. Sci. Appl., 18 (2008), 633-650. |
[61] |
A. Visintin, Scale-transformations of maximal monotone relations in view of homogenization, Boll. Un. Mat. Ital., III (2010), 591-601 |
[62] |
A. Visintin, Structural stability of doubly-nonlinear flows, Boll. Un. Mat. Ital., IV (2011), 363-391. |
[63] |
A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations (in press)., ().
|
show all references
References:
[1] |
S. Aizicovici and Q. Yan, Convergence theorems for abstract doubly nonlinear differential equations, Panamer. Math. J, 7 (1997), 1-17. |
[2] |
H. Attouch, "Variational Convergence for Functions and Operators," Pitman, Boston, 1984. |
[3] |
G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations, Differential Integral Equations, 6 (1993), 1161-117. |
[4] |
V. Barbu, Existence theorems for a class of two point boundary problems, J. Differential Equations, 17 (1975), 236-257. |
[5] |
V. Barbu, "Nonlinear Differential Equations of Monotone Types in Banach Spaces," Springer, Berlin, 2010. |
[6] |
V. Barbu and T. Precupanu, "Convexity and Optimization in Banach Spaces," Editura Academiei, Bucuresti, 1978. |
[7] |
A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals," Oxford University Press, Oxford, 1998. |
[8] |
H. Brezis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," North-Holland, Amsterdam, 1973. |
[9] |
H. Brezis, "Analyse Fonctionelle. Théorie et Applications," Masson, Paris, 1983. |
[10] |
H. Brezis and I. Ekeland, Un principe variationnel associé àcertaines équations parabo-liques.I. Le cas indépendant du temps, II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and 1197-1198. |
[11] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, Berlin, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[12] |
M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal., 15 (2008), 87-104. |
[13] |
R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements, Set-Valued Analysis, 10 (2002), 297-316.
doi: 10.1023/A:1020639314056. |
[14] |
R. S. Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383.
doi: 10.1090/S0002-9939-03-07053-9. |
[15] |
P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl. Math., 9 (1992), 181-203.
doi: 10.1007/BF03167565. |
[16] |
P. Colli and A. Visintin, On a class of doubly nonlinear evolution problems, Communications in P. D. E. s, 15 (1990), 737-756. |
[17] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Boston, 1993. |
[18] |
G. Dal Maso and R. Toader, A model for the quasi-static growth or brittle fractures: Existence and approximation results, Arch. Rat. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[19] |
E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. |
[20] |
I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnelles," Dunod Gau-thier-Villars, Paris, 1974. |
[21] |
W. Fenchel, "Convex Cones, Sets, and Functions," Princeton Univ., 1953. |
[22] |
S. Fitzpatrick, Representing monotone operators by convex functions, Workshop/Minicon-ference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. |
[23] |
G. A. Francfort and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem: Existence and approximation results, J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[24] |
H. Gajewski, K. Gröger and K. Zacharias, "Nichtlineare Operator Gleichungen und Operator Differential Gleichungen," Akademie-Verlag, Berlin, 1974. |
[25] |
H. Gajewski and K. Zacharias, Über eine weitere Klasse nichtlinearer Differentialgleichungen im Hilbert-Raum, Math. Nachr., 57 (1973), 127-140.
doi: 10.1002/mana.19730570107. |
[26] |
N. Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl., 4 (2008), 107-135.
doi: 10.1007/s11784-008-0083-4. |
[27] |
N. Ghoussoub, "Selfdual Partial Differential Systems and Their Variational Principles," Springer, 2009. |
[28] |
N. Ghoussoub and L. Tzou, A variational principle for gradient flows, Math. Ann., 330 (2004), 519-549.
doi: 10.1007/s00208-004-0558-6. |
[29] |
W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis," Springer, New York, 1999. |
[30] |
A. D. Ioffe and V. M. Tihomirov, "Theory of Extremal Problems," North-Holland, Amsterdam, 1979. |
[31] |
H. Jian, On the homogenization of degenerate parabolic equations, Acta Math. Appl. Sinica, 16 (2000), 100-110.
doi: 10.1007/BF02670970. |
[32] |
M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis," Springer, Berlin 1989. (Russian ed. Nauka, Moscow 1983). |
[33] |
P. Krejčí, "Convexity, Hysteresis and Dissipation in Hyperbolic Equations," Gakkotosho, Tokyo, 1997. |
[34] |
J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires," Dunod, Paris, 1969. |
[35] |
J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Vols. I,II. Springer, Berlin 1972. (French edition: Dunod, Paris 1968). |
[36] |
J. E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. convex functions, Set-Valued Anal., 13 (2005), 21-46.
doi: 10.1007/s11228-004-4170-4. |
[37] |
J. E. Martinez-Legaz and B. F. Svaiter, Minimal convex functions bounded below by the duality product, Proc. Amer. Math. Soc., 136 (2008), 873-878.
doi: 10.1090/S0002-9939-07-09176-9. |
[38] |
J. E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2001), 243-247. |
[39] |
I. D. Mayergoyz, "Mathematical Models of Hysteresis and Their Applications," Elsevier, Amsterdam, 2003. |
[40] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[41] |
A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. |
[42] |
A. Mielke, F. Theil and V. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[43] |
A. K. Nandakumaran and M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations, 1 (2001), 19 pp. |
[44] |
B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. |
[45] |
J. P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules, C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. |
[46] |
J. P. Penot, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), 855-871.
doi: 10.1016/j.na.2004.05.018. |
[47] |
R. T. Rockafellar, A general correspondence between dual minimax problems and convex programs, Pacific J. Math., 25 (1968), 597-611. |
[48] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1969. |
[49] |
R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 97-169. |
[50] |
T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005. |
[51] |
G. Schimperna, A. Segatti and U. Stefanelli, Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst., 18 (2007), 15-38.
doi: 10.3934/dcds.2007.18.15. |
[52] |
T. Senba, On some nonlinear evolution equations, Funkcial. Ekvac., 29 (1986), 243-257. |
[53] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[54] |
U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, S. I. A. M. J. Control Optim., 8 (2008), 1615-1642.
doi: 10.1137/070684574. |
[55] |
A. Visintin, A phase transition problem with delay, Control and Cybernetics, 11 (1982), 5-18. |
[56] |
A. Visintin, "Differential Models of Hysteresis," Springer, Berlin, 1994. |
[57] |
A. Visintin, "Models of Phase Transitions," Birkhäuser, Boston, 1996. |
[58] |
A. Visintin, Quasilinear hyperbolic equations with hysteresis, Ann. Inst. H. Poincaré. Analyse non lineaire, 19 (2002), 451-476. |
[59] |
A. Visintin, Maxwell's equations with vector hysteresis, Arch. Rat. Mech. Anal., 175 (2005), 1-38.
doi: 10.1007/s00205-004-0333-6. |
[60] |
A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, Adv. Math. Sci. Appl., 18 (2008), 633-650. |
[61] |
A. Visintin, Scale-transformations of maximal monotone relations in view of homogenization, Boll. Un. Mat. Ital., III (2010), 591-601 |
[62] |
A. Visintin, Structural stability of doubly-nonlinear flows, Boll. Un. Mat. Ital., IV (2011), 363-391. |
[63] |
A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations (in press)., ().
|
[1] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
[2] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[3] |
Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773 |
[4] |
Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations and Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004 |
[5] |
Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021034 |
[6] |
Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167 |
[7] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51 |
[8] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[9] |
Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405 |
[10] |
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042 |
[11] |
Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033 |
[12] |
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 |
[13] |
Augusto VisintiN. On the variational representation of monotone operators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046 |
[14] |
Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010 |
[15] |
Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002 |
[16] |
Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060 |
[17] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[18] |
Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics and Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019 |
[19] |
Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580 |
[20] |
Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]