- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization
Structural stability of rate-independent nonpotential flows
1. | Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38050, Povo di Trento, Italy |
  Fitzpatrick showed that any maximal monotone relation may be represented variationally. On this basis, an initial- and boundary-value problem associated to the equation above is here formulated as a null-minimization problem, without assuming $\gamma$ to be cyclically monotone. Existence of a solution $u\in H^1(0,T; H^1(\Omega))$ is proved, as well as its stability with respect to variations of the data, of the mapping $\gamma$, and of the domain $\Omega$.
References:
[1] |
Panamer. Math. J, 7 (1997), 1-17. |
[2] |
Pitman, Boston, 1984. |
[3] |
Differential Integral Equations, 6 (1993), 1161-117. |
[4] |
J. Differential Equations, 17 (1975), 236-257. |
[5] |
Springer, Berlin, 2010. |
[6] |
Editura Academiei, Bucuresti, 1978. |
[7] |
Oxford University Press, Oxford, 1998. |
[8] |
North-Holland, Amsterdam, 1973. |
[9] |
Masson, Paris, 1983. |
[10] |
II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and 1197-1198. |
[11] |
Springer, Berlin, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[12] |
J. Convex Anal., 15 (2008), 87-104. |
[13] |
Set-Valued Analysis, 10 (2002), 297-316.
doi: 10.1023/A:1020639314056. |
[14] |
Proc. Amer. Math. Soc., 131 (2003), 2379-2383.
doi: 10.1090/S0002-9939-03-07053-9. |
[15] |
Japan J. Indust. Appl. Math., 9 (1992), 181-203.
doi: 10.1007/BF03167565. |
[16] |
Communications in P. D. E. s, 15 (1990), 737-756. |
[17] |
Birkhäuser, Boston, 1993. |
[18] |
Arch. Rat. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[19] |
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. |
[20] |
Dunod Gau-thier-Villars, Paris, 1974. |
[21] |
Princeton Univ., 1953. Google Scholar |
[22] |
Workshop/Minicon-ference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. |
[23] |
J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[24] |
Akademie-Verlag, Berlin, 1974. |
[25] |
Math. Nachr., 57 (1973), 127-140.
doi: 10.1002/mana.19730570107. |
[26] |
J. Fixed Point Theory Appl., 4 (2008), 107-135.
doi: 10.1007/s11784-008-0083-4. |
[27] |
Springer, 2009. |
[28] |
Math. Ann., 330 (2004), 519-549.
doi: 10.1007/s00208-004-0558-6. |
[29] |
Springer, New York, 1999. |
[30] |
North-Holland, Amsterdam, 1979. |
[31] |
Acta Math. Appl. Sinica, 16 (2000), 100-110.
doi: 10.1007/BF02670970. |
[32] |
Springer, Berlin 1989. (Russian ed. Nauka, Moscow 1983). |
[33] |
Gakkotosho, Tokyo, 1997. Google Scholar |
[34] |
Dunod, Paris, 1969. |
[35] |
Vols. I,II. Springer, Berlin 1972. (French edition: Dunod, Paris 1968). |
[36] |
Set-Valued Anal., 13 (2005), 21-46.
doi: 10.1007/s11228-004-4170-4. |
[37] |
Proc. Amer. Math. Soc., 136 (2008), 873-878.
doi: 10.1090/S0002-9939-07-09176-9. |
[38] |
J. Nonlinear Convex Anal., 2 (2001), 243-247. |
[39] |
Elsevier, Amsterdam, 2003. Google Scholar |
[40] |
in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[41] |
Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. |
[42] |
Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[43] |
Electron. J. Differential Equations, 1 (2001), 19 pp. |
[44] |
C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. |
[45] |
C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. |
[46] |
Nonlinear Anal., 58 (2004), 855-871.
doi: 10.1016/j.na.2004.05.018. |
[47] |
Pacific J. Math., 25 (1968), 597-611. |
[48] |
Princeton University Press, Princeton, 1969. |
[49] |
Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 97-169. |
[50] |
Birkhäuser, Basel, 2005. |
[51] |
Discrete Contin. Dyn. Syst., 18 (2007), 15-38.
doi: 10.3934/dcds.2007.18.15. |
[52] |
Funkcial. Ekvac., 29 (1986), 243-257. |
[53] |
Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[54] |
S. I. A. M. J. Control Optim., 8 (2008), 1615-1642.
doi: 10.1137/070684574. |
[55] |
Control and Cybernetics, 11 (1982), 5-18. |
[56] |
Springer, Berlin, 1994. |
[57] |
Birkhäuser, Boston, 1996. |
[58] |
Ann. Inst. H. Poincaré. Analyse non lineaire, 19 (2002), 451-476. |
[59] |
Arch. Rat. Mech. Anal., 175 (2005), 1-38.
doi: 10.1007/s00205-004-0333-6. |
[60] |
Adv. Math. Sci. Appl., 18 (2008), 633-650. |
[61] |
Boll. Un. Mat. Ital., III (2010), 591-601 |
[62] |
Boll. Un. Mat. Ital., IV (2011), 363-391. |
[63] |
A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations (in press)., (). Google Scholar |
show all references
References:
[1] |
Panamer. Math. J, 7 (1997), 1-17. |
[2] |
Pitman, Boston, 1984. |
[3] |
Differential Integral Equations, 6 (1993), 1161-117. |
[4] |
J. Differential Equations, 17 (1975), 236-257. |
[5] |
Springer, Berlin, 2010. |
[6] |
Editura Academiei, Bucuresti, 1978. |
[7] |
Oxford University Press, Oxford, 1998. |
[8] |
North-Holland, Amsterdam, 1973. |
[9] |
Masson, Paris, 1983. |
[10] |
II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and 1197-1198. |
[11] |
Springer, Berlin, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[12] |
J. Convex Anal., 15 (2008), 87-104. |
[13] |
Set-Valued Analysis, 10 (2002), 297-316.
doi: 10.1023/A:1020639314056. |
[14] |
Proc. Amer. Math. Soc., 131 (2003), 2379-2383.
doi: 10.1090/S0002-9939-03-07053-9. |
[15] |
Japan J. Indust. Appl. Math., 9 (1992), 181-203.
doi: 10.1007/BF03167565. |
[16] |
Communications in P. D. E. s, 15 (1990), 737-756. |
[17] |
Birkhäuser, Boston, 1993. |
[18] |
Arch. Rat. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[19] |
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. |
[20] |
Dunod Gau-thier-Villars, Paris, 1974. |
[21] |
Princeton Univ., 1953. Google Scholar |
[22] |
Workshop/Minicon-ference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. |
[23] |
J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[24] |
Akademie-Verlag, Berlin, 1974. |
[25] |
Math. Nachr., 57 (1973), 127-140.
doi: 10.1002/mana.19730570107. |
[26] |
J. Fixed Point Theory Appl., 4 (2008), 107-135.
doi: 10.1007/s11784-008-0083-4. |
[27] |
Springer, 2009. |
[28] |
Math. Ann., 330 (2004), 519-549.
doi: 10.1007/s00208-004-0558-6. |
[29] |
Springer, New York, 1999. |
[30] |
North-Holland, Amsterdam, 1979. |
[31] |
Acta Math. Appl. Sinica, 16 (2000), 100-110.
doi: 10.1007/BF02670970. |
[32] |
Springer, Berlin 1989. (Russian ed. Nauka, Moscow 1983). |
[33] |
Gakkotosho, Tokyo, 1997. Google Scholar |
[34] |
Dunod, Paris, 1969. |
[35] |
Vols. I,II. Springer, Berlin 1972. (French edition: Dunod, Paris 1968). |
[36] |
Set-Valued Anal., 13 (2005), 21-46.
doi: 10.1007/s11228-004-4170-4. |
[37] |
Proc. Amer. Math. Soc., 136 (2008), 873-878.
doi: 10.1090/S0002-9939-07-09176-9. |
[38] |
J. Nonlinear Convex Anal., 2 (2001), 243-247. |
[39] |
Elsevier, Amsterdam, 2003. Google Scholar |
[40] |
in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[41] |
Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. |
[42] |
Arch. Rational Mech. Anal., 162 (2002), 137-177.
doi: 10.1007/s002050200194. |
[43] |
Electron. J. Differential Equations, 1 (2001), 19 pp. |
[44] |
C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. |
[45] |
C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. |
[46] |
Nonlinear Anal., 58 (2004), 855-871.
doi: 10.1016/j.na.2004.05.018. |
[47] |
Pacific J. Math., 25 (1968), 597-611. |
[48] |
Princeton University Press, Princeton, 1969. |
[49] |
Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 97-169. |
[50] |
Birkhäuser, Basel, 2005. |
[51] |
Discrete Contin. Dyn. Syst., 18 (2007), 15-38.
doi: 10.3934/dcds.2007.18.15. |
[52] |
Funkcial. Ekvac., 29 (1986), 243-257. |
[53] |
Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[54] |
S. I. A. M. J. Control Optim., 8 (2008), 1615-1642.
doi: 10.1137/070684574. |
[55] |
Control and Cybernetics, 11 (1982), 5-18. |
[56] |
Springer, Berlin, 1994. |
[57] |
Birkhäuser, Boston, 1996. |
[58] |
Ann. Inst. H. Poincaré. Analyse non lineaire, 19 (2002), 451-476. |
[59] |
Arch. Rat. Mech. Anal., 175 (2005), 1-38.
doi: 10.1007/s00205-004-0333-6. |
[60] |
Adv. Math. Sci. Appl., 18 (2008), 633-650. |
[61] |
Boll. Un. Mat. Ital., III (2010), 591-601 |
[62] |
Boll. Un. Mat. Ital., IV (2011), 363-391. |
[63] |
A. Visintin, Variational formulation and structural stability of monotone equations,, Calc. Var. Partial Differential Equations (in press)., (). Google Scholar |
[1] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
[2] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[3] |
Dalila Azzam-Laouir, Warda Belhoula, Charles Castaing, M. D. P. Monteiro Marques. Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evolution Equations & Control Theory, 2020, 9 (1) : 219-254. doi: 10.3934/eect.2020004 |
[4] |
Ismail Kombe. On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5167-5176. doi: 10.3934/dcds.2013.33.5167 |
[5] |
Vincenzo Recupero. Hysteresis operators in metric spaces. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 773-792. doi: 10.3934/dcdss.2015.8.773 |
[6] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51 |
[7] |
Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591 |
[8] |
JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042 |
[9] |
Martin Brokate, Pavel Krejčí. Weak differentiability of scalar hysteresis operators. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2405-2421. doi: 10.3934/dcds.2015.35.2405 |
[10] |
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711-727. doi: 10.3934/dcds.2008.22.711 |
[11] |
Augusto VisintiN. On the variational representation of monotone operators. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 909-918. doi: 10.3934/dcdss.2017046 |
[12] |
Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010 |
[13] |
Luca Lussardi, Stefano Marini, Marco Veneroni. Stochastic homogenization of maximal monotone relations and applications. Networks & Heterogeneous Media, 2018, 13 (1) : 27-45. doi: 10.3934/nhm.2018002 |
[14] |
Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics & Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019 |
[15] |
Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060 |
[16] |
Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580 |
[17] |
Nils Svanstedt. Multiscale stochastic homogenization of monotone operators. Networks & Heterogeneous Media, 2007, 2 (1) : 181-192. doi: 10.3934/nhm.2007.2.181 |
[18] |
M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 |
[19] |
Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i |
[20] |
Xiao Ding, Deren Han. A modification of the forward-backward splitting method for maximal monotone mappings. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 295-307. doi: 10.3934/naco.2013.3.295 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]