Citation: |
[1] |
Günter Albinus, Herbert Gajewski and Rolf Hünlich, Thermodynamic design of energy models of semiconductor devices, Nonlinearity, 15 (2002), 367-383. |
[2] |
Herbert Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (editors,,H.-J. Schmeisser and et al.), Teubner-Texte Math. 133, 9-126. Teubner, Stuttgart, (1993). |
[3] |
Denis Anders, Kerstin Weinberg and Roland Reichardt, Isogeometric analysis of thermal diffusion in binary blends, Computational Materials Science, 52 (2012), 182-188. |
[4] |
Dick Bedeaux, Nonequilibrium thermodynamics and statistical physics of surfaces, in "Advance in Chemical Physics" (editors, I. Prigogine and S. A. Rice), \textbf LXIV, 47-109. John Wiley & Sons, Inc., 1986. |
[5] |
Dieter Bothe and Michel Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discr. Cont. Dynam. Systems Ser. S, 8 (2011), 49-59. |
[6] |
S. R. De Groot and P. Mazur, "Non-Equilibrium Thermodynamics," Dover Publ., New York, 1984.doi: 10.1063/1.34645. |
[7] |
Laurent Desvillettes and Klemens Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., 319 (2006), 157-176. |
[8] |
Laurent Desvillettes and Klemens Fellner, Entropy methods for reaction-diffusion systems, in "Discrete Contin. Dyn. Syst. (suppl). Dynamical Systems and Differential Equations," Proceedings of the 6th AIMS International Conference, (2007), 304-312. |
[9] |
Michael Ederer, "Thermokinetic Modeling and Model Reduction of Reaction Networks," PhD thesis, Universität Stuttgart, Nov. 2009. |
[10] |
Brian J. Edwards, An analysis of single and double generator thermodynamics formalisms for the macroscopic description of complex fluids, J. Non-Equilib. Thermodyn., 23 (1998), 301-333. |
[11] |
Eduard Feireisl and Giulio Schimperna, Large time behaviour of solutions to Penrose-Fife phase change models, Math. Methods Appl. Sci. (MMAS), 28 (2005), 2117-2132. |
[12] |
Michel Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002. |
[13] |
Vincent Giovangigli and Marc Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry, Math. Methods Appl. Sci. (MMAS), 27 (2004), 739-768. |
[14] |
A. Glitzky and R. Hünlich, Global existence result for pair diffusion models, SIAM J. Math. Analysis, 36 (2005), 1200-1225. (electronic). |
[15] |
Annegret Glitzky, Energy estimates for electro-reaction-diffusion systems with partly fast kinetics, Discr. Cont. Dynam. Systems Ser. A, 25 (2009), 159-174. |
[16] |
Annegret Glitzky and Alexander Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. angew. Math. Phys. (ZAMP), 2011. Submitted. WIAS preprint 1603. |
[17] |
Klaus Hackl, Generalized standard media and variational principles in classical and finite strain elastoplasticity, J. Mech. Phys. Solids, 45 (1997), 667-688. |
[18] |
Bernard Halphen and Quoc Son Nguyen, Sur les matériaux standards généralisés, J. Mécanique}, 14 (1975), 39-63. |
[19] |
Richard Jordan, David Kinderlehrer, and Felix Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Analysis, 29 (1998), 1-17. |
[20] |
Signe Kjelstrup and Dick Bedeaux, "Non-equilibrium Thermodynamics of Heterogeneous Systems," volume 16 of Series on Advances in Statistical Mechanics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. |
[21] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Transl. Math. Monographs. Amer. Math. Soc., Providence, R. I., 1968. |
[22] |
A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in "Multifield Problems in Solid and Fluid Mechanics" (editors, R. Helmig, A. Mielke and B. I. Wohlmuth), 351-379. Springer-Verlag, Berlin, 2006. |
[23] |
Alexander Mielke, Formulation of thermoelastic dissipative material behavior using GENERIC, Contin. Mech. Thermodyn., 23 (2011), 233-256.doi: 10.1007/s00161-010-0179-0. |
[24] |
Alexander Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346. |
[25] |
Alexander Mielke, On thermodynamically consistent models and gradient structures for thermoplasticity, GAMM Mitt., 34 (2011), 51-58. |
[26] |
Lars Onsager, Reciprocal relations in irreversible processes, I+{II}, Physical Review, 37 (1931), 405-426. (part II, 38, 2265-227). |
[27] |
Hans Christian Öttinger, "Beyond Equilibrium Thermodynamics," John Wiley, New Jersey, 2005. |
[28] |
Hans Christian Öttinger and Miroslav Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E (3), 56 (1997), 6633-6655. |
[29] |
Felix Otto, The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. |
[30] |
Oliver Penrose and Paul C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Physica D, 43 (1990), 44-62. |
[31] |
Oliver Penrose and Paul C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent'' phase-field model, Physica D, 69 (1993), 107-113. |
[32] |
Wen-An Yong, An interesting class of partial differential equations, J. Math. Phys., 49 (2008) pp. 21. 033503. |