April  2013, 6(2): 501-515. doi: 10.3934/dcdss.2013.6.501

Estimating area of inclusions in anisotropic plates from boundary data

1. 

Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Udine, via Cotonificio 114, 33100 Udine

2. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via Valerio 12/1, 34127 Trieste, Italy

3. 

DIMAD, Università degli Studi di Firenze, via Lombroso 6/17, 50134 Firenze

Received  October 2011 Revised  November 2011 Published  November 2012

We consider the inverse problem of determining the possible presence of an inclusion in a thin plate by boundary measurements. The plate is made by non-homogeneous linearly elastic material belonging to a general class of anisotropy. The inclusion is made by different elastic material. Under some a priori assumptions on the unknown inclusion, we prove constructive upper and lower estimates of the area of the unknown defect in terms of an easily expressed quantity related to work, which is given in terms of measurements of a couple field applied at the boundary and of the induced transversal displacement and its normal derivative taken at the boundary of the plate.
Citation: Antonino Morassi, Edi Rosset, Sergio Vessella. Estimating area of inclusions in anisotropic plates from boundary data. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 501-515. doi: 10.3934/dcdss.2013.6.501
References:
[1]

R. A. Adams, "Sobolev Spaces," Academic Press, New York, 1975.

[2]

G. Alessandrini, A. Morassi and E. Rosset, Size estimates, in "Inverse Problems: Theory and Applications" (eds. G. Alessandrini and G. Uhlmann), Contemp. Math., AMS, Providence, RI, 333 (2003), 33-75.

[3]

G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM Rev., 46 (2004), 477-498. doi: 10.1137/S0036144504442098.

[4]

G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal. Appl., 357 (2009), 349-355. doi: 10.1016/j.jmaa.2009.04.024.

[5]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math., 58 (1998), 1060-1071. doi: 10.1137/S0036139996306468.

[6]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 1-47. doi: 10.1088/0266-5611/25/12/123004.

[7]

G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proc. Amer. Math. Soc., 128 (2000), 53-64. doi: 10.1090/S0002-9939-99-05474-X.

[8]

S. Alinhac, Non-unicité pour des opérateurs différentiels à la caractéristiques complexes simples, Ann. Sci. École Norm. Sup., 13 (1980), 385-393.

[9]

M. Di Cristo, C. L. Lin and J. N. Wang, Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem, preprint (2011).

[10]

G. Fichera, Existence theorems in elasticity, in "Handbuch der Physik," VI, Springer-Verlag, Berlin (1972), 347-389.

[11]

M. E. Gurtin, The linear theory of elasticity, in "Handbuch der Physik," VI, Springer-Verlag, Berlin (1972), 1-295.

[12]

M. Ikehata, Size estimation of inclusion, J. Inverse Ill-Posed Probl., 6 (1998), 127-140.

[13]

H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size, SIAM J. Math. Anal., 28 (1997), 1389-1405. doi: 10.1137/S0036141096299375.

[14]

Y. Lei, M. Di Cristo and G. Nakamura, Size estimates in thermography, Appl. Anal., 88 (2009), 831-46. doi: 10.1080/00036810903042133.

[15]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480. doi: 10.1088/0266-5611/20/2/010.

[16]

A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J., 56 (2007), 2325-2384. doi: 10.1512/iumj.2007.56.2975.

[17]

A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates, Inverse Problems, 25 (2009), Paper 045009. doi: 10.1088/0266-5611/25/4/045009.

[18]

A. Morassi, E. Rosset and S. Vessella, Stable determination of a rigid inclusion in an anisotropic plate, preprint (2011), arXiv:math/1111.0604.

[19]

A. Morassi, E. Rosset and S. Vessella, Sharp three sphere inequality for perturbations of a product of two second order elliptic operators and stability for the Cauchy problem for the anisotropic plate equation, J. Funct. Anal., 261 (2011), 1494-1541. doi: 10.1016/j.jfa.2011.05.011.

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces," Academic Press, New York, 1975.

[2]

G. Alessandrini, A. Morassi and E. Rosset, Size estimates, in "Inverse Problems: Theory and Applications" (eds. G. Alessandrini and G. Uhlmann), Contemp. Math., AMS, Providence, RI, 333 (2003), 33-75.

[3]

G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM Rev., 46 (2004), 477-498. doi: 10.1137/S0036144504442098.

[4]

G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal. Appl., 357 (2009), 349-355. doi: 10.1016/j.jmaa.2009.04.024.

[5]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math., 58 (1998), 1060-1071. doi: 10.1137/S0036139996306468.

[6]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 1-47. doi: 10.1088/0266-5611/25/12/123004.

[7]

G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proc. Amer. Math. Soc., 128 (2000), 53-64. doi: 10.1090/S0002-9939-99-05474-X.

[8]

S. Alinhac, Non-unicité pour des opérateurs différentiels à la caractéristiques complexes simples, Ann. Sci. École Norm. Sup., 13 (1980), 385-393.

[9]

M. Di Cristo, C. L. Lin and J. N. Wang, Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem, preprint (2011).

[10]

G. Fichera, Existence theorems in elasticity, in "Handbuch der Physik," VI, Springer-Verlag, Berlin (1972), 347-389.

[11]

M. E. Gurtin, The linear theory of elasticity, in "Handbuch der Physik," VI, Springer-Verlag, Berlin (1972), 1-295.

[12]

M. Ikehata, Size estimation of inclusion, J. Inverse Ill-Posed Probl., 6 (1998), 127-140.

[13]

H. Kang, J. K. Seo and D. Sheen, The inverse conductivity problem with one measurement: stability and estimation of size, SIAM J. Math. Anal., 28 (1997), 1389-1405. doi: 10.1137/S0036141096299375.

[14]

Y. Lei, M. Di Cristo and G. Nakamura, Size estimates in thermography, Appl. Anal., 88 (2009), 831-46. doi: 10.1080/00036810903042133.

[15]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480. doi: 10.1088/0266-5611/20/2/010.

[16]

A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J., 56 (2007), 2325-2384. doi: 10.1512/iumj.2007.56.2975.

[17]

A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates, Inverse Problems, 25 (2009), Paper 045009. doi: 10.1088/0266-5611/25/4/045009.

[18]

A. Morassi, E. Rosset and S. Vessella, Stable determination of a rigid inclusion in an anisotropic plate, preprint (2011), arXiv:math/1111.0604.

[19]

A. Morassi, E. Rosset and S. Vessella, Sharp three sphere inequality for perturbations of a product of two second order elliptic operators and stability for the Cauchy problem for the anisotropic plate equation, J. Funct. Anal., 261 (2011), 1494-1541. doi: 10.1016/j.jfa.2011.05.011.

[1]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[2]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[3]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[4]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[5]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[6]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070

[7]

Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027

[8]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[9]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[10]

Jone Apraiz, Jin Cheng, Anna Doubova, Enrique Fernández-Cara, Masahiro Yamamoto. Uniqueness and numerical reconstruction for inverse problems dealing with interval size search. Inverse Problems and Imaging, 2022, 16 (3) : 569-594. doi: 10.3934/ipi.2021062

[11]

Pu-Zhao Kow, Jenn-Nan Wang. Refined instability estimates for some inverse problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022017

[12]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[13]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[14]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[15]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[16]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[17]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[18]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[19]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[20]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]