Citation: |
[1] |
M. P. Allen and D. J. Tildesley, "Computer Simulation of Liquids," Oxford University Press, 1987. |
[2] |
D. Barese, "A New Discrete Model for Simulating Crowd-Structure Interaction: General Formulation and Application to the Millenium Bridge," Tesi di Laurea in Tecnicadelle Costruzioni, Specialistica in Ingegneria Civile, Universitàdegli studi di Salerno, facoltà di ingegneria, 2011. |
[3] |
V. Blue and J. Adler, Cellular automata microsimulation of bi-directional pedestrian flows, Journal of the Transportation Research Board, 1678 (2000), 135-141.doi: 10.3141/1678-17. |
[4] |
J. Bodgi, S. Erlicher and P. Argoul, Lateral vibration of footbridges under crowd - loading : Continuous crowd modelling approach, Key Engineering Materials, 347 (2007), 685-690.doi: 10.4028/www.scientific.net/KEM.347.685. |
[5] |
J. Bodgi, S. Erlicher and P. Argoul, Pedestrians-footbridge synchronization: Analytical study of a macroscopic model, Journal of Sound and Vibration, (2011), submitted for publication. |
[6] |
C. Chalons, "La méthode Fast-Marching Pour la Propagation de Fronts," cours ENSTA, 2009. |
[7] |
C. Cholet, "Chocs de Solides Rigides," Ph. D thesis, Université Paris VI, 1998. |
[8] |
P. A. Cundall, A computer model for simulating progressive large scale movements of blocky rock systems, in "Proc. of the Symposium of the International Society of Rock Mechanics," 1 (1971), 132-150. |
[9] |
P. A. Cundall and O. D. L. Strack, A discrete numerical model for granular assemblies, Geotechnique, 29 (1979), 47-65.doi: 10.1680/geot.1979.29.1.47. |
[10] |
S. Dal Pont and E. Dimnet, A theory for multiple collisions of rigid solids and numerical simulation of granular flow, Int. J. Solids and Structures, 43 (2006), 6100-6114. |
[11] |
S. Dal Pont and E. Dimnet, Theoretical approach to instantaneous collisions and numerical simulation of granular media using the A-$CD^2$ method, Communications in Applied Mathematics and Computational Science -Berkeley, 3 (2008), 1-24. |
[12] |
E. Dimnet, "Mouvement et Collisions de Solides Rigides ou Déformables," Ph. D thesis, Ecole Nationale des Ponts et Chaussées, 2002. |
[13] |
C. Ericson, "Real Time Collision Detection," Morgan Haufmann Publishers, 2004. |
[14] |
M. Frémond, Rigid bodies collisions, Physics Letters A, 204 (1995), 33-41.doi: 10.1016/0375-9601(95)00418-3. |
[15] |
M. Frémond, "Collisions," Edizioni del Dipartimento di Ingegneria Civile dell' Universita di Roma Tor Vergata, 2007. |
[16] |
J. J. Fruin, Designing for pedestrians: A level of service concept, Highway Research Record, (1971), 1-15. |
[17] |
B. D. Hankin and R. A. Wright, Passenger flow in subways, Oper. Res., 9 (1958), 81-88. |
[18] |
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Physical Review E, 51 (1995), 4282-4286.doi: 10.1103/PhysRevE.51.4282. |
[19] |
D. Helbing, I. Farkas and T. Vicsek, Simulating dynamic features of escape panic, Nature, 407 (2000), 487-490.doi: 10.1038/35035023. |
[20] |
D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics, 73 (2002), 1067-1141.doi: 10.1103/RevModPhys.73.1067. |
[21] |
D. Helbing, M. Isobe, T. Nagatani and K. Takimoto, Lattice gas simulation of experimentally studied evacuation dynamics, Physical review E, 67 (2003).doi: 10.1103/PhysRevE.67.067101. |
[22] |
D. Helbing, L. Buzna, A. Johansson and T. Werner, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions, Transportation Science, 39 (2005), 1-24. |
[23] |
L. F. Henderson, Thestatistics of crowd fluids, Nature, 229 (1971), 381-383.doi: 10.1038/229381a0. |
[24] |
S. P. Hoogendoorn, P. H. L. Bovy and W. Daamen, Microscopic pedestrian wayfinding and dynamics modelling, Pedestrian and Evacuation Dynamics, (2001), 123-154. |
[25] |
M. Jean and J. J. Moreau, Unilaterality and dry friction in the dynamics of rigid bodies collection, Contact Mechanics International Symposium, Presses Polytechniques et Universitaires Romanes, (1992), 31-48. |
[26] |
M. Jean, The non smooth contact dynamics method, Compt. Methods Appl. Math. Engrg., 177 (1999), 235-257.doi: 10.1016/S0045-7825(98)00383-1. |
[27] |
G. Keith Still, "Crowd Dynamics," Ph. D thesis, University of Warwick, Department of Mathematics, 2000. |
[28] |
R. Kimmel and J. A. Sethian, Fast marching methods for computing distance maps and shortest paths, Technical Report 669, CPAM, University of California, Berkeley, (1996). |
[29] |
Y. Kishino, Disk model analysisof granular media, Micromechanics of Granular Materials, (1988), 143-152. |
[30] |
H. Klüpfel, "A Cellular Automaton Model for Crowd Movement and Egress Simulation," Ph. D thesis,Universitat Duisburg - Essen, 2003. |
[31] |
B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik, 102 (2006), 649-679.doi: 10.1007/s00211-005-0666-6. |
[32] |
J. J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cones mutuellement polaires, C. R. Acad. Sci, Ser. I, 255 (1962), 238-240. |
[33] |
J. J. Moreau, Sur les lois dufrottement, de la viscosité et de la plasticité, Comptesrendus de l'Académie des Sciences de Paris, 271 (1970), 608-611. |
[34] |
J. J. Moreau, Unilateral contactand dry friction in finite freedom dynamics, in "Non Smooth Mechanics and Applications" (eds. J. J. Moreau and P.-D. Panagiotopoulos), CISM Courses and Lectures, (Springer-Verlag, Wien, New York), 302 (1988), 1-82. |
[35] |
J. J. Moreau, New computation methods in granular dynamics, Thornton, editor, Powder $&$Grains, Balkema Press, (1993), 227-232. |
[36] |
J. J. Moreau, Some numerical methods in multibody dynamics: Application to granular materials, Eur. J. Mech. A/Solids, 13 (1994), 93-114. |
[37] |
M. Moussaïd, N. Perozo, S. Garnier, D. Helbing and G. Theraulaz, The walking behaviour of pedestrian social groups and its impact on crowd dynamics, PLoS ONE, 5 (2010). |
[38] |
S. R. Musse, C. R. Jung, J. C. S. Jacques Jr. and A. Braun, Using computer vision to simulate the motion of virtual agents, Computer Animation and Virtual Worlds, 18 (2007), 83-93.doi: 10.1002/cav.163. |
[39] |
L. Paoli, Time discretization of vibro-impact, Phil. Trans. R. Soc. A, 359 (2001), 2405-2428.doi: 10.1098/rsta.2001.0858. |
[40] |
S. Paris, "Characterisation of Levels of Services and Modelling of Flows of People Inside Exchange Areas," Ph. D thesis, Université de Rennes $1$, 2007. |
[41] |
S. Paris, J. Pettrï and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Computer Graphics Forum, 26 (2007), 665-674.doi: 10.1111/j.1467-8659.2007.01090.x. |
[42] |
P. Pécol, S. Dal Pont, S. Erlicher and P. Argoul, Modelling crowd-structure interaction, Mécanique $&$ Industries, EDP Sciences, 11 (2010), 495-504. |
[43] |
P. Pécol, S. Dal Pont, S. Erlicher and P. Argoul, Discrete approaches for crowd movement modelling, European Journal of Computational Mechanics, 20 (2011), 189-206. |
[44] |
P. Pécol, S. Dal Pont, S. Erlicher and P. Argoul, Smooth/non-smooth contact modeling of human crowds movement: numerical aspects and application to emergency evacuations, Ann. Solid Struct. Mech., 2 (2011), 69-85. |
[45] |
P. Pécol, "Modélisation 2D Discrète du Mouvement des Piétons - Applicationà L'évacuation des Structures du Génie Civil et Àl'interaction Foule-Passerelle," Ph.D thesis, Université Paris Est, 2011, à paraître. |
[46] |
P. Pécol, S. Dal Pont, S. Erlicher, J. Bodgi and P. Argoul, A 2D discrete model for crowd-structure interaction, in Proc. of the fourth international conference Footbridge 2011, Wroclaw, Poland, July 6-9, (2011). |
[47] |
N. Pelechano, J. M. Addler and N. I. Badler, Controlling individual agents in high-density crowd simulation, in Proc. of the 2007 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, (2007), 99-108. |
[48] |
F. Radjai, M. Jean, J. J. Moreau and S. Roux, Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett., 77 (1996), 264-277.doi: 10.1103/PhysRevLett.77.274. |
[49] |
F. Radjai and V. Richefeu, Mechanics of Materials, Contact Dynamics as a Nonsmooth Discrete Element Method, 41 (2009), 715-728. |
[50] |
S. Reicher, The St. Pauls riotan explanation of the limits of crowd action in terms of asocial identity model, EJSP , 14 (1984), 1-21. |
[51] |
M. Renouf, "Optimisationnumérique et Calcul Parallèle Pour L'étude des Milieux Divisés Bi- ettri Dimensionnels," Ph. D thesis, Université Montpellier II -Sciences et Techniques du Languedoc -, 2004. |
[52] |
C. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Computer Graphics, 21 (1987), 25-34.doi: 10.1145/37402.37406. |
[53] |
G. Saussine, C. Cholet, P. E. Gautier, F.Dubois, C. Bohatier and J. J. Moreau, Modelling ballast behaviour under dynamic loading. Part 1: a 2D polygonal discrete element method approach, Comput. Methods Appl. Mech. Engrg, 195 (2006), 2841-2859.doi: 10.1016/j.cma.2005.07.006. |
[54] |
J. C. Simo and T. J. R. Hughes, "Elastoplasticity and Viscoplasticity Computational Aspects," Springer, Berlin, 1996. |
[55] |
H. Singh, R. Arter, L. Dodd and J. Drury, Modelling subgroup behavior in crowd dynamics DEM simulation, Applied Mathematical Modelling, 33 (2009), 4408-4423.doi: 10.1016/j.apm.2009.03.020. |
[56] |
M. Sung, M. Gleicher and S. Chenney, Scalable behaviors for crowd simulation, Eurographics,23 (2004), 519-528. |
[57] |
K. Teknomo, Application of microscopic pedestrian simulation model, Transportation Research Part F, 9 (2006), 15-27. |
[58] |
J. Venel, "Modélisation Mathématique des Mouvements de Foule," Ph. D thesis, Laboratoirede Mathématiques, Université Paris XI, Orsay, France, 2008. |
[59] |
W. Yu and A. Johansson, Modelling crowd turbulence by many-particle simulations, Physical Review E, 76 (2007).doi: 10.1103/PhysRevE.76.046105. |