\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact

Abstract Related Papers Cited by
  • Pseudo-potentials are very useful tools to define thermodynamically admissible constitutive rules. Bipotentials are convenient for numerical purposes, in particular for non-associative rules. Unfortunately, these functionals are not always easy to construct starting from a given constitutive law. This work proposes a procedure to find the pseudo-potentials and the bipotential starting from the usual description of a non-associative constitutive law. This method is applied to different non-associative plasticity models such as the Drucker-Prager model and the non-linear kinematic hardening model. The same procedure allows one to obtain the pseudo-potentials of an endochronic plasticity model. The pseudo-potentials for the contact problem with dissipation are constructed using the same ideas. For all these non-associative constitutive laws a bipotential is then automatically deduced.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect, G. E. G. B. Report RD/B/N 731, (1966).

    [2]

    Z. P. Bažant and P. D. Bath, Endochronic theory of inelasticity and failure of concrete, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 701-722.

    [3]

    Z. P. Bažant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 225-238.

    [4]

    Z. P. Bažant, Endochronic inelasticity and incremental plasticity, International Journal of Solids and Structures, 14 (1978), 691-714.doi: 10.1016/0020-7683(78)90029-X.

    [5]

    G. Bodovillé and G. de Saxcé., Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach, European Journal of Mechanics A/Solids, 20 (2001), 99-112.doi: 10.1016/S0997-7538(00)01109-8.

    [6]

    J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, 7 (1991), 1-15.

    [7]

    I. F. Collins and G. T. Houlsby, Application of thermomechnical principles to the modelling of geotechnical materials, Proceedings of the Royal Society of London, Series A, 453 (1997), 1975-2001.

    [8]

    G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de l'Académie des Sciences, Série II, 314 (1992), 125-129.

    [9]

    G. de Saxcé and L. Bousshine, Limit analysis theorems for implicit standard materials: applications to the unilateral contact with dry friction and non-associated flow rules in soils and rocks, Int. J. Mech. Sci., 40 n4 (1998), 387-398.doi: 10.1016/S0020-7403(97)00058-1.

    [10]

    I. Einav, A. M. Puzrin and G. T. Houlsby, Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces, Int. J. Numer. Anal. Meth. Geomech., 27 (2003), 837-858.doi: 10.1002/nag.303.

    [11]

    M. A. Eisenberg and A. Phillips, A theory of plasticity with non-coincident yield and loading surfaces, Acta Mechanica, 11 (1971), 247-260.doi: 10.1007/BF01176559.

    [12]

    S. Erlicher and N. Point, Thermodynamic admissibility of Bouc-Wen type hysteresis models, Comptes Rendus Manique, 332 (2004), 51-57.doi: 10.1016/j.crme.2003.10.009.

    [13]

    S. Erlicher and N. Point, On the associativity of the Drucker-Prager model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, (2005).

    [14]

    S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: a new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200.

    [15]

    S. Erlicher and O. S. Bursi, Bouc-Wen-type models with stiffness degradation: Thermodynamic analysis and applications, Journal of Engineering Mechanics ASCE, 134 (2008), 843-855.

    [16]

    M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

    [17]

    M. Frémond, "Collisions," Edizioni del Dipartimento di Ingegneria Civile dell'Universita di Roma Tor Vergata, 2007.

    [18]

    B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 1 (1975), 39-63. (in French).

    [19]

    M. Hjiaj, J. Fortin and G. de Saxcé, A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex, International Journal of Engineering Science, 41 (2003), 1109-1143.doi: 10.1016/S0020-7225(02)00376-2.

    [20]

    G. T. Houlsby and A. M. Puzrin, A thermomechnical framework for constitutive models for rate-independent dissipative materials, Int. J. Plasticity, 16 (2000), 1017-1047.doi: 10.1016/S0749-6419(99)00073-X.

    [21]

    M. Jirek and Z. P. Bažant, "Inelastic Analysis of Structures," Wiley, Chichester, 2002.

    [22]

    J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials," Cambridge University Press, Cambridge,1990.

    [23]

    J. Lubliner, R. L. Taylor and F. Auricchio, A new model of generalized plasticity, International Journal of Solids and Structures, 30 (1993), 3171-3184.doi: 10.1016/0020-7683(93)90146-X.

    [24]

    J. Lubliner and R. L. Taylor, Two material models for cyclic plasticty: non linear kinematic hardening and generalized plasticity, International Journal of Plasticity, 11 (1995), 65-98.doi: 10.1016/0749-6419(94)00039-5.

    [25]

    D. G. Luenberger, "Linear and Nonlinear Programming," Addison-Wesley Publishing Company, Menlo Park, California,1984.

    [26]

    J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Sie II, 271 (1970), 608-611. (in French).

    [27]

    N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842.

    [28]

    A. M. Puzrin and G. T. Houlsby, A thermomechanical framework for rate-independent dissipative materials with internal functions, Int. Jour. of Plasticity, 17 (2001), 1147-1165.doi: 10.1016/S0749-6419(00)00083-8.

    [29]

    A. M. Puzrin and G. T. Houlsby, Fundamentals of kinematic hardening hyperplasticity, Int. Jour. of Solids and Structures, 38 (2001), 3771-3794.

    [30]

    R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1969.

    [31]

    K. C. Valanis, A theory of viscoplasticity without a yield surface, Archiwum Mechaniki Stossowanej, 23 (1971), 517-551.

    [32]

    K. C. Valanis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory, Archiwum Mechaniki Stossowanej, 32 (1980), 171-191.

    [33]

    H. Ziegler, Discussion of some objections to thermodynamic orthogonality, Ingenieur-Archiv, 50 (1981), 149-164.doi: 10.1007/BF00536486.

    [34]

    H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-238.doi: 10.1016/S0065-2156(08)70278-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return