-
Previous Article
Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator
- DCDS-S Home
- This Issue
-
Next Article
A constructive proof of Gibson's stability theorem
Product structures and fractional integration along curves in the space
1. | DTG, Università degli Studi di Padova, Stradella San Nicola 3, 36100 Vicenza, Italy |
2. | DICEA, Università degli Studi di Padova, Via Marzolo 9, 35131 Padova, Italy, Italy |
References:
[1] |
V. Casarino, P. Ciatti and S. Secco, Product kernels adapted to curves in the space, Revista Matematica Iberoamericana, 27 (2011), 1023-1057.
doi: 10.4171/RMI/662. |
[2] |
V. Casarino and S. Secco, $L^p-L^q$ boundedness of analytic families of fractional integrals, Studia Mathematica, 184 (2008), 153-174.
doi: 10.4064/sm184-2-5. |
[3] |
R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143.
doi: 10.1016/S0001-8708(82)80001-7. |
[4] |
G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups," Mathematical Notes, Princeton University Press, 1982. |
[5] |
L. Grafakos, Strong type endpoint bounds for analytic families of fractional integrals, Proc. Amer. Math. Soc., 117 (1993), 653-663
doi: 10.2307/2159123. |
[6] |
M. Kashiwara, B-functions and holonomic systems, Invent. Math., 38 (1976/77), 33-53. |
[7] |
D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I., Invent. Math., 119 (1995), 119-233.
doi: 10.1007/BF01245180. |
[8] |
A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal., 181 (2001), 29-118.
doi: 10.1006/jfan.2000.3714. |
[9] |
A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana, 20 (2004), 531-561.
doi: 10.4171/RMI/400. |
[10] |
A. Nagel and E. M. Stein, The $\overline{\partial}_b$-complex on decoupled boundaries in $\mathbbC^n$, Ann. of Math. (2), 164 (2006), 649-713.
doi: 10.4007/annals.2006.164.649. |
[11] |
E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295.
doi: 10.1090/S0002-9904-1978-14554-6. |
show all references
References:
[1] |
V. Casarino, P. Ciatti and S. Secco, Product kernels adapted to curves in the space, Revista Matematica Iberoamericana, 27 (2011), 1023-1057.
doi: 10.4171/RMI/662. |
[2] |
V. Casarino and S. Secco, $L^p-L^q$ boundedness of analytic families of fractional integrals, Studia Mathematica, 184 (2008), 153-174.
doi: 10.4064/sm184-2-5. |
[3] |
R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143.
doi: 10.1016/S0001-8708(82)80001-7. |
[4] |
G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups," Mathematical Notes, Princeton University Press, 1982. |
[5] |
L. Grafakos, Strong type endpoint bounds for analytic families of fractional integrals, Proc. Amer. Math. Soc., 117 (1993), 653-663
doi: 10.2307/2159123. |
[6] |
M. Kashiwara, B-functions and holonomic systems, Invent. Math., 38 (1976/77), 33-53. |
[7] |
D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I., Invent. Math., 119 (1995), 119-233.
doi: 10.1007/BF01245180. |
[8] |
A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal., 181 (2001), 29-118.
doi: 10.1006/jfan.2000.3714. |
[9] |
A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana, 20 (2004), 531-561.
doi: 10.4171/RMI/400. |
[10] |
A. Nagel and E. M. Stein, The $\overline{\partial}_b$-complex on decoupled boundaries in $\mathbbC^n$, Ann. of Math. (2), 164 (2006), 649-713.
doi: 10.4007/annals.2006.164.649. |
[11] |
E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 84 (1978), 1239-1295.
doi: 10.1090/S0002-9904-1978-14554-6. |
[1] |
Thabet Abdeljawad. Fractional operators with boundary points dependent kernels and integration by parts. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 351-375. doi: 10.3934/dcdss.2020020 |
[2] |
Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003 |
[3] |
Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905 |
[4] |
Ling Lin, Dong He, Zhiyi Tan. Bounds on delay start LPT algorithm for scheduling on two identical machines in the $l_p$ norm. Journal of Industrial and Management Optimization, 2008, 4 (4) : 817-826. doi: 10.3934/jimo.2008.4.817 |
[5] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
[6] |
Martin Fraas, David Krejčiřík, Yehuda Pinchover. On some strong ratio limit theorems for heat kernels. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 495-509. doi: 10.3934/dcds.2010.28.495 |
[7] |
Haixia Yu. Hilbert transforms along double variable fractional monomials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1433-1446. doi: 10.3934/cpaa.2019069 |
[8] |
W. R. Madych. Behavior in $ L^\infty $ of convolution transforms with dilated kernels. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022005 |
[9] |
Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115 |
[10] |
Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure and Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761 |
[11] |
Hongyong Cui, Peter E. Kloeden, Wenqiang Zhao. Strong $ (L^2,L^\gamma\cap H_0^1) $-continuity in initial data of nonlinear reaction-diffusion equation in any space dimension. Electronic Research Archive, 2020, 28 (3) : 1357-1374. doi: 10.3934/era.2020072 |
[12] |
T. Diogo, N. B. Franco, P. Lima. High order product integration methods for a Volterra integral equation with logarithmic singular kernel. Communications on Pure and Applied Analysis, 2004, 3 (2) : 217-235. doi: 10.3934/cpaa.2004.3.217 |
[13] |
Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125 |
[14] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[15] |
Xavier Ros-Oton, Joaquim Serra. Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2131-2150. doi: 10.3934/dcds.2015.35.2131 |
[16] |
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59. |
[17] |
Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167 |
[18] |
Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175 |
[19] |
Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117 |
[20] |
Jiří Minarčík, Michal Beneš. Minimal surface generating flow for space curves of non-vanishing torsion. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022011 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]