Advanced Search
Article Contents
Article Contents

Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates

Abstract Related Papers Cited by
  • We prove null controllability results for the one dimensional degenerate heat equation in non divergence form with a drift term and Neumann boundary conditions. To this aim we prove Carleman estimates for the associated adjoint problem. Some linear extensions are considered.
    Mathematics Subject Classification: 93B05, 93B07, 35K65, 35K20, 35Q93.


    \begin{equation} \\ \end{equation}
  • [1]

    F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0222-6.


    A. Bensoussan, G. Da Prato, M. C. Delfout and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1993.


    V. Barbu, A. Favini and S. Romanelli, Degenerate evolution equations and regularity of their associated semigroups, Funkc. Eqv., 39 (1996), 421-448.


    P. Cannarsa and G. Fragnelli, Null controllability of semilinear weakly degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 2006 (2006), 1-20.


    P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.doi: 10.1007/s00028-008-0353-34.


    P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 693-713.doi: 10.3934/nhm.2007.2.695.


    P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: controllability and observability, IFIP Int. Fed. Inf. Process, 202 (2006), 163-173. Springer, New York.doi: 10.1007/0-387-33882-9_15.


    P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.doi: 10.1137/04062062X.


    P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 147-152.doi: 10.1016/j.crma.2008.12.011.


    E. B. Davies, "Spectral Theory and Differential Operators," Cambridge Studies in Advanced Mathematics, 42. Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511623721.


    K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer-Verlag, New York, Berlin, Heidelberg, 1999.


    H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.


    H. O. Fattorini, "Infinite Dimensional Optimization and Control Theory," Encyclopedia of Mathematics and its Applications, 62. Cambridge University Press, Cambridge, 1999.


    A. Favini, J. A. Goldstein and S. Romanelli, Analytic Semigroups on $L^p_\omega (0,1)$ Generated by Some Classes of Second Order Differential Operators, Taiwanese J. Math., 3 (1999), 181-210.


    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Degenerate second order differential operators generating analytic semigroups in $L^p$ and $W^{1,p}$, Math. Nachr., 238 (2002), 78-102.


    A. Favini and A. Yagi, "Degenerate Differential Equations in Banach Spaces," Monographs and Textbooks in Pure and Applied Mathematics, 215. Marcel Dekker, Inc., New York, 1999.


    W. Feller, The parabolic differential equations and the associated semigroups of transformations, Ann. of Math. (2), 55 (1952), 468-519.


    W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.


    E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.doi: 10.1016/S0294-1449(00)00117-7.


    A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.


    J. A. Goldstein, R. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation, Infinite Dimensional Stochastic Analysis. Quantum Probab. White Noise Anal., World Sci. Publ., Hackensack, NJ, 22 (2008), 226-235.doi: 10.1142/9789812779557_0013.


    S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes," Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London, 1981.


    G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.doi: 10.1080/03605309508821097.


    P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes," Die Grundlehren der mathematischen Wissenschaften, 151 Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.


    P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362.doi: 10.1007/s00028-006-0214-6.


    P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.doi: 10.1137/S0363012902403547.


    G. Metafune and D. Pallara, Trace formulas for some singular differential operators and applications, Math. Nachr., 211 (2000), 127-157.


    S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24.


    S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.doi: 10.1090/S0002-9947-00-02665-9.


    R. M. Mininni and S. Romanelli, Martingale estimating functions for Feller diffusion processes generated by degenerate elliptic operators, J. Concr. Appl. Math., 1 (2003), 191-216.


    D. L. Russell, Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739.doi: 10.1137/1020095.


    N. Shimakura, "Partial Differential Operators of Elliptic Type," Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.


    D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDE's, Contemp. Math., 209 (1997), 267-279.doi: 10.1090/conm/209/02771.

  • 加载中

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint