\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates

Abstract Related Papers Cited by
  • We prove null controllability results for the one dimensional degenerate heat equation in non divergence form with a drift term and Neumann boundary conditions. To this aim we prove Carleman estimates for the associated adjoint problem. Some linear extensions are considered.
    Mathematics Subject Classification: 93B05, 93B07, 35K65, 35K20, 35Q93.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Alabau-Boussouira, P. Cannarsa and G. Fragnelli, Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6 (2006), 161-204.doi: 10.1007/s00028-006-0222-6.

    [2]

    A. Bensoussan, G. Da Prato, M. C. Delfout and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1993.

    [3]

    V. Barbu, A. Favini and S. Romanelli, Degenerate evolution equations and regularity of their associated semigroups, Funkc. Eqv., 39 (1996), 421-448.

    [4]

    P. Cannarsa and G. Fragnelli, Null controllability of semilinear weakly degenerate parabolic equations in bounded domains, Electron. J. Differential Equations, 2006 (2006), 1-20.

    [5]

    P. Cannarsa, G. Fragnelli and D. Rocchetti, Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form, J. Evol. Equ., 8 (2008), 583-616.doi: 10.1007/s00028-008-0353-34.

    [6]

    P. Cannarsa, G. Fragnelli and D. Rocchetti, Null controllability of degenerate parabolic operators with drift, Netw. Heterog. Media, 2 (2007), 693-713.doi: 10.3934/nhm.2007.2.695.

    [7]

    P. Cannarsa, G. Fragnelli and J. Vancostenoble, Linear degenerate parabolic equations in bounded domains: controllability and observability, IFIP Int. Fed. Inf. Process, 202 (2006), 163-173. Springer, New York.doi: 10.1007/0-387-33882-9_15.

    [8]

    P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47 (2008), 1-19.doi: 10.1137/04062062X.

    [9]

    P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates and null controllability for boundary-degenerate parabolic operators, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 147-152.doi: 10.1016/j.crma.2008.12.011.

    [10]

    E. B. Davies, "Spectral Theory and Differential Operators," Cambridge Studies in Advanced Mathematics, 42. Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511623721.

    [11]

    K. J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Springer-Verlag, New York, Berlin, Heidelberg, 1999.

    [12]

    H. O. Fattorini and D. L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.

    [13]

    H. O. Fattorini, "Infinite Dimensional Optimization and Control Theory," Encyclopedia of Mathematics and its Applications, 62. Cambridge University Press, Cambridge, 1999.

    [14]

    A. Favini, J. A. Goldstein and S. Romanelli, Analytic Semigroups on $L^p_\omega (0,1)$ Generated by Some Classes of Second Order Differential Operators, Taiwanese J. Math., 3 (1999), 181-210.

    [15]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Degenerate second order differential operators generating analytic semigroups in $L^p$ and $W^{1,p}$, Math. Nachr., 238 (2002), 78-102.

    [16]

    A. Favini and A. Yagi, "Degenerate Differential Equations in Banach Spaces," Monographs and Textbooks in Pure and Applied Mathematics, 215. Marcel Dekker, Inc., New York, 1999.

    [17]

    W. Feller, The parabolic differential equations and the associated semigroups of transformations, Ann. of Math. (2), 55 (1952), 468-519.

    [18]

    W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), 1-31.

    [19]

    E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 583-616.doi: 10.1016/S0294-1449(00)00117-7.

    [20]

    A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations," Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

    [21]

    J. A. Goldstein, R. M. Mininni and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation, Infinite Dimensional Stochastic Analysis. Quantum Probab. White Noise Anal., World Sci. Publ., Hackensack, NJ, 22 (2008), 226-235.doi: 10.1142/9789812779557_0013.

    [22]

    S. Karlin and H. M. Taylor, "A Second Course in Stochastic Processes," Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), New York-London, 1981.

    [23]

    G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations, 20 (1995), 335-356.doi: 10.1080/03605309508821097.

    [24]

    P. Mandl, "Analytical Treatment of One-Dimensional Markov Processes," Die Grundlehren der mathematischen Wissenschaften, 151 Academia Publishing House of the Czechoslovak Academy of Sciences, Prague; Springer-Verlag New York Inc., New York, 1968.

    [25]

    P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations, J. Evol. Equ., 6 (2006), 325-362.doi: 10.1007/s00028-006-0214-6.

    [26]

    P. Martinez, J. P. Raymond and J. Vancostenoble, Regional null controllability of a linearized Crocco-type equation, SIAM J. Control Optim., 42 (2003), 709-728.doi: 10.1137/S0363012902403547.

    [27]

    G. Metafune and D. Pallara, Trace formulas for some singular differential operators and applications, Math. Nachr., 211 (2000), 127-157.

    [28]

    S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space, Port. Math. (N.S.), 58 (2001), 1-24.

    [29]

    S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line, Trans. Amer. Math. Soc., 353 (2001), 1635-1659.doi: 10.1090/S0002-9947-00-02665-9.

    [30]

    R. M. Mininni and S. Romanelli, Martingale estimating functions for Feller diffusion processes generated by degenerate elliptic operators, J. Concr. Appl. Math., 1 (2003), 191-216.

    [31]

    D. L. Russell, Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739.doi: 10.1137/1020095.

    [32]

    N. Shimakura, "Partial Differential Operators of Elliptic Type," Translations of Mathematical Monographs, 99. American Mathematical Society, Providence, RI, 1992.

    [33]

    D. Tataru, Carleman estimates, unique continuation and controllability for anizotropic PDE's, Contemp. Math., 209 (1997), 267-279.doi: 10.1090/conm/209/02771.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return