-
Previous Article
Non-hamiltonian Schrödinger systems
- DCDS-S Home
- This Issue
-
Next Article
Dynamic behaviour of a periodic competitive system with pulses
Nonautonomous Kolmogorov equations in the whole space: A survey on recent results
1. | Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy |
References:
[1] |
L. Angiuli, L. Lorenzi and A. Lunardi, Hypercontractivity and asymptotic behaviour in nonautonomous Kolmogorov equations, Available on arXiv (http://arxiv.org/abs/1203.1280). |
[2] |
A. A. Albanese and E. M. Mangino, Cores for Feller semigroups with an invariant measure, J. Differential Equations, 225 (2006), 361-377.
doi: 10.1016/j.jde.2005.09.014. |
[3] |
A. A. Albanese and E. M. Mangino, Corrigendum to: "Cores for Feller Semigroups with an Invariant Measure'', J. Differential Equations, 244 (2008), 2980-2982.
doi: 10.1016/j.jde.2008.03.001. |
[4] |
A. A. Albanese, L. Lorenzi and E. M. Mangino, $L^p$-uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}^N2$, J. Funct. Anal., 256 (2009), 1238-1257.
doi: 10.1016/j.jfa.2008.07.022. |
[5] |
D. G. Aronson and J. Serrin, Local behaviour of solutions of quasilinear parabolic equations, Arch. Rational. Mech. Anal., 25 (1967), 81-122. |
[6] |
R. Azencott, Behaviour of diffusion semigroups at infinity, Bull. Soc. Math. France, 102 (1974), 193-240. |
[7] |
S. Bernstein, Sur la généralisation du probléme de Dirichlet, I, Math. Ann., 62 (1906), 253-271.
doi: 10.1007/BF01449980. |
[8] |
M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc., 357 (2005), 2627-2664.
doi: 10.1090/S0002-9947-05-03781-5. |
[9] |
M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups," 283 of Pure and applied mathematics, Chapman Hall/CRC Press, 2006. |
[10] |
V. I. Bogachev, G. Da Prato and M. Röckner, On parabolic equations for measures, Comm. Partial Differential equations, 33 (2008), 397-418.
doi: 10.1080/03605300701382415. |
[11] |
V. I. Bogachev, G. Da Prato, M. Röckner and W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., 39 (2007), 631-640.
doi: 10.1112/blms/bdm046. |
[12] |
V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusion under minimal conditions, Comm. Partial Differential equations, 26 (2001), 2037-2080.
doi: 10.1081/PDE-100107815. |
[13] |
V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Global regularity and bounds for solutions of parabolic equations for probability measures, Theory Probab. Appl., 50 (2006), 561-581.
doi: 10.1137/S0040585X97981986. |
[14] |
V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Estimates of densities of stationary distributions and transition probabilities of diffusion processes, Theory Probab. Appl., 52 (2008), 209-236.
doi: 10.1137/S0040585X97982967. |
[15] |
C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Amer. Math. Soc., Providence (RI), 1999. |
[16] |
R. Chill, E. Fasangova, G. Metafune and D. Pallara, The sector of analyticity of the Ornstein-Uhlenbeck semigroup on $L^p$ spaces with respect to invariant measure, J. London Math. Soc., 71 (2005), 703-722.
doi: 10.1112/S0024610705006344. |
[17] |
G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal., 131 (1995), 94-114.
doi: 10.1006/jfan.1995.1084. |
[18] |
G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations, 198 (2004), 35-52.
doi: 10.1016/j.jde.2003.10.025. |
[19] |
G. Da Prato and A. Lunardi, Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ., 7 (2007), 587-614.
doi: 10.1007/s00028-007-0321-z. |
[20] |
G. Da Prato and M. Röckner, Dissipative stochastic equations in Hilbert space with time dependent coefficients, Rend. Lincei Mat. Appl., 17 (2006), 397-403.
doi: 10.4171/RLM/476. |
[21] |
G. Da Prato and M. Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, in "Seminar on Stochastic Analysis, Random Fields and Applications V", pp. 115-122, Progr. Probab., 59, Birkhäuser, Basel, (2008).
doi: 10.1007/978-3-7643-8458-6_7. |
[22] |
E. B. Dynkin, Three classes of infinite-dimensional diffusions, J. Funct. Anal., 86 (1989), 75-110.
doi: 10.1016/0022-1236(89)90065-7. |
[23] |
S. Fornaro, N. Fusco, G. Metafune and D. Pallara, Sharp upper bounds for the density of some invariant measures, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 1145-1161.
doi: 10.1017/S0308210508000498. |
[24] |
S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Disc. Cont. Dyn. Syst. Series A, 18 (2007), 747-772.
doi: 10.3934/dcds.2007.18.747. |
[25] |
M. Geissert, L. Lorenzi and R. Schnaubelt, $L^p$-regularity for parabolic operators with unbounded time-dependent coefficients, Annali Mat. Pura Appl., 189 (2010), 303-333.
doi: 10.1007/s10231-009-0110-0. |
[26] |
M. Geissert and A. Lunardi, Invariant measures and maximal $L^2$ regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc., 77 (2008), 719-740.
doi: 10.1112/jlms/jdn009. |
[27] |
M. Geissert and A. Lunardi, Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc., 79 (2009), 85-106.
doi: 10.1112/jlms/jdn057. |
[28] |
S. Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Jap. J. Math., 27 (1957), 55-102. |
[29] |
M. Kunze, L. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 362 (2010), 169-198.
doi: 10.1090/S0002-9947-09-04738-2. |
[30] |
L. Lorenzi, Schauder estimates for the Ornstein-Uhlenbeck semigroup in spaces of functions with polynomial or exponential growth, Dynam. Systems Appl., 9 (2000), 199-219. |
[31] |
L. Lorenzi, On a class of elliptic operators with unbounded time- and space-dependent coefficients in $\mathbb{R}^N2$, in "Functional Analysis and Evolution Equations," 433-456, Birkhäuser, Basel, (2008).
doi: 10.1007/978-3-7643-7794-6_28. |
[32] |
L. Lorenzi, Optimal regularity for nonautonomous Kolmogorov equations, Discr. Cont. Dyn. Syst. Series S, 4 (2011), 169-191.
doi: 10.3934/dcdss.2011.4.169. |
[33] |
L. Lorenzi and A. Lunardi, Elliptic operators with unbounded diffusion coefficients in $L^2$ spaces with respect to invariant measures, J. Evol. Equ., 6 (2006), 691-709.
doi: 10.1007/s00028-006-0283-6. |
[34] |
L. Lorenzi, A. Lunardi and A. Zamboni, Asymptotic behavior in time periodic parabolic problems with unbounded coefficients, J. Differential Equations, 249 (2010), 3377-3418.
doi: 10.1016/j.jde.2010.08.019. |
[35] |
L. Lorenzi and A. Zamboni, Cores for parabolic operators with unbounded coefficients, J. Differential Equations, 246 (2009), 2724-2761.
doi: 10.1016/j.jde.2008.12.015. |
[36] |
A. Lunardi, On the Ornstein-Uhlenbeck Operator in $L^2$ spaces with respect to invariant measures, Trans. Amer. Math. Soc., 349 (1997), 155-169.
doi: 10.1090/S0002-9947-97-01802-3. |
[37] |
A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\mathbb{R}^{N}$, Studia Math., 128 (1998), 171-198. |
[38] |
G. Metafune, $L^p$-spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30 (2001), 97-124. |
[39] |
G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\mathbb{R}^{N}$, Semigroup Forum, 65 (2002), 159-205.
doi: 10.1007/s002330010129. |
[40] |
G. Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in $L^p$ spaces with respect to invariant measures, J. Funct. Anal., 196 (2002), 40-60.
doi: 10.1006/jfan.2002.3978. |
[41] |
G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures, J. Funct. Anal., 223 (2005), 396-424.
doi: 10.1016/j.jfa.2005.02.001. |
[42] |
G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1 (2002), 471-485. |
[43] |
J. Prüss, A. Rhandi and R. Schnaubelt, The domain of elliptic operators on $L^p(\mathbb mathbb{R}^{d})$ with unbounded drift coefficients, Houston J. Math., 32 (2006), 563-576. |
[44] |
W. Stannat, Time-dependent diffusion operators on $L^1$, J. Evol. Equ., 4 (2004), 463-495.
doi: 10.1007/s00028-004-0147-x. |
show all references
References:
[1] |
L. Angiuli, L. Lorenzi and A. Lunardi, Hypercontractivity and asymptotic behaviour in nonautonomous Kolmogorov equations, Available on arXiv (http://arxiv.org/abs/1203.1280). |
[2] |
A. A. Albanese and E. M. Mangino, Cores for Feller semigroups with an invariant measure, J. Differential Equations, 225 (2006), 361-377.
doi: 10.1016/j.jde.2005.09.014. |
[3] |
A. A. Albanese and E. M. Mangino, Corrigendum to: "Cores for Feller Semigroups with an Invariant Measure'', J. Differential Equations, 244 (2008), 2980-2982.
doi: 10.1016/j.jde.2008.03.001. |
[4] |
A. A. Albanese, L. Lorenzi and E. M. Mangino, $L^p$-uniqueness for elliptic operators with unbounded coefficients in $\mathbb{R}^N2$, J. Funct. Anal., 256 (2009), 1238-1257.
doi: 10.1016/j.jfa.2008.07.022. |
[5] |
D. G. Aronson and J. Serrin, Local behaviour of solutions of quasilinear parabolic equations, Arch. Rational. Mech. Anal., 25 (1967), 81-122. |
[6] |
R. Azencott, Behaviour of diffusion semigroups at infinity, Bull. Soc. Math. France, 102 (1974), 193-240. |
[7] |
S. Bernstein, Sur la généralisation du probléme de Dirichlet, I, Math. Ann., 62 (1906), 253-271.
doi: 10.1007/BF01449980. |
[8] |
M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans. Amer. Math. Soc., 357 (2005), 2627-2664.
doi: 10.1090/S0002-9947-05-03781-5. |
[9] |
M. Bertoldi and L. Lorenzi, "Analytical Methods for Markov Semigroups," 283 of Pure and applied mathematics, Chapman Hall/CRC Press, 2006. |
[10] |
V. I. Bogachev, G. Da Prato and M. Röckner, On parabolic equations for measures, Comm. Partial Differential equations, 33 (2008), 397-418.
doi: 10.1080/03605300701382415. |
[11] |
V. I. Bogachev, G. Da Prato, M. Röckner and W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. Lond. Math. Soc., 39 (2007), 631-640.
doi: 10.1112/blms/bdm046. |
[12] |
V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusion under minimal conditions, Comm. Partial Differential equations, 26 (2001), 2037-2080.
doi: 10.1081/PDE-100107815. |
[13] |
V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Global regularity and bounds for solutions of parabolic equations for probability measures, Theory Probab. Appl., 50 (2006), 561-581.
doi: 10.1137/S0040585X97981986. |
[14] |
V. I. Bogachev, M. Röckner and S. V. Shaposhnikov, Estimates of densities of stationary distributions and transition probabilities of diffusion processes, Theory Probab. Appl., 52 (2008), 209-236.
doi: 10.1137/S0040585X97982967. |
[15] |
C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Amer. Math. Soc., Providence (RI), 1999. |
[16] |
R. Chill, E. Fasangova, G. Metafune and D. Pallara, The sector of analyticity of the Ornstein-Uhlenbeck semigroup on $L^p$ spaces with respect to invariant measure, J. London Math. Soc., 71 (2005), 703-722.
doi: 10.1112/S0024610705006344. |
[17] |
G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal., 131 (1995), 94-114.
doi: 10.1006/jfan.1995.1084. |
[18] |
G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations, 198 (2004), 35-52.
doi: 10.1016/j.jde.2003.10.025. |
[19] |
G. Da Prato and A. Lunardi, Ornstein-Uhlenbeck operators with time periodic coefficients, J. Evol. Equ., 7 (2007), 587-614.
doi: 10.1007/s00028-007-0321-z. |
[20] |
G. Da Prato and M. Röckner, Dissipative stochastic equations in Hilbert space with time dependent coefficients, Rend. Lincei Mat. Appl., 17 (2006), 397-403.
doi: 10.4171/RLM/476. |
[21] |
G. Da Prato and M. Röckner, A note on evolution systems of measures for time-dependent stochastic differential equations, in "Seminar on Stochastic Analysis, Random Fields and Applications V", pp. 115-122, Progr. Probab., 59, Birkhäuser, Basel, (2008).
doi: 10.1007/978-3-7643-8458-6_7. |
[22] |
E. B. Dynkin, Three classes of infinite-dimensional diffusions, J. Funct. Anal., 86 (1989), 75-110.
doi: 10.1016/0022-1236(89)90065-7. |
[23] |
S. Fornaro, N. Fusco, G. Metafune and D. Pallara, Sharp upper bounds for the density of some invariant measures, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 1145-1161.
doi: 10.1017/S0308210508000498. |
[24] |
S. Fornaro and L. Lorenzi, Generation results for elliptic operators with unbounded diffusion coefficients in $L^p$- and $C_b$-spaces, Disc. Cont. Dyn. Syst. Series A, 18 (2007), 747-772.
doi: 10.3934/dcds.2007.18.747. |
[25] |
M. Geissert, L. Lorenzi and R. Schnaubelt, $L^p$-regularity for parabolic operators with unbounded time-dependent coefficients, Annali Mat. Pura Appl., 189 (2010), 303-333.
doi: 10.1007/s10231-009-0110-0. |
[26] |
M. Geissert and A. Lunardi, Invariant measures and maximal $L^2$ regularity for nonautonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc., 77 (2008), 719-740.
doi: 10.1112/jlms/jdn009. |
[27] |
M. Geissert and A. Lunardi, Asymptotic behavior and hypercontractivity in non-autonomous Ornstein-Uhlenbeck equations, J. Lond. Math. Soc., 79 (2009), 85-106.
doi: 10.1112/jlms/jdn057. |
[28] |
S. Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Jap. J. Math., 27 (1957), 55-102. |
[29] |
M. Kunze, L. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients, Trans. Amer. Math. Soc., 362 (2010), 169-198.
doi: 10.1090/S0002-9947-09-04738-2. |
[30] |
L. Lorenzi, Schauder estimates for the Ornstein-Uhlenbeck semigroup in spaces of functions with polynomial or exponential growth, Dynam. Systems Appl., 9 (2000), 199-219. |
[31] |
L. Lorenzi, On a class of elliptic operators with unbounded time- and space-dependent coefficients in $\mathbb{R}^N2$, in "Functional Analysis and Evolution Equations," 433-456, Birkhäuser, Basel, (2008).
doi: 10.1007/978-3-7643-7794-6_28. |
[32] |
L. Lorenzi, Optimal regularity for nonautonomous Kolmogorov equations, Discr. Cont. Dyn. Syst. Series S, 4 (2011), 169-191.
doi: 10.3934/dcdss.2011.4.169. |
[33] |
L. Lorenzi and A. Lunardi, Elliptic operators with unbounded diffusion coefficients in $L^2$ spaces with respect to invariant measures, J. Evol. Equ., 6 (2006), 691-709.
doi: 10.1007/s00028-006-0283-6. |
[34] |
L. Lorenzi, A. Lunardi and A. Zamboni, Asymptotic behavior in time periodic parabolic problems with unbounded coefficients, J. Differential Equations, 249 (2010), 3377-3418.
doi: 10.1016/j.jde.2010.08.019. |
[35] |
L. Lorenzi and A. Zamboni, Cores for parabolic operators with unbounded coefficients, J. Differential Equations, 246 (2009), 2724-2761.
doi: 10.1016/j.jde.2008.12.015. |
[36] |
A. Lunardi, On the Ornstein-Uhlenbeck Operator in $L^2$ spaces with respect to invariant measures, Trans. Amer. Math. Soc., 349 (1997), 155-169.
doi: 10.1090/S0002-9947-97-01802-3. |
[37] |
A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\mathbb{R}^{N}$, Studia Math., 128 (1998), 171-198. |
[38] |
G. Metafune, $L^p$-spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30 (2001), 97-124. |
[39] |
G. Metafune, D. Pallara and M. Wacker, Feller semigroups on $\mathbb{R}^{N}$, Semigroup Forum, 65 (2002), 159-205.
doi: 10.1007/s002330010129. |
[40] |
G. Metafune, D. Pallara and E. Priola, Spectrum of Ornstein-Uhlenbeck operators in $L^p$ spaces with respect to invariant measures, J. Funct. Anal., 196 (2002), 40-60.
doi: 10.1006/jfan.2002.3978. |
[41] |
G. Metafune, D. Pallara and A. Rhandi, Global properties of invariant measures, J. Funct. Anal., 223 (2005), 396-424.
doi: 10.1016/j.jfa.2005.02.001. |
[42] |
G. Metafune, J. Prüss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1 (2002), 471-485. |
[43] |
J. Prüss, A. Rhandi and R. Schnaubelt, The domain of elliptic operators on $L^p(\mathbb mathbb{R}^{d})$ with unbounded drift coefficients, Houston J. Math., 32 (2006), 563-576. |
[44] |
W. Stannat, Time-dependent diffusion operators on $L^1$, J. Evol. Equ., 4 (2004), 463-495.
doi: 10.1007/s00028-004-0147-x. |
[1] |
Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099 |
[2] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529 |
[3] |
Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050 |
[4] |
Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977 |
[5] |
Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010 |
[6] |
Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559 |
[7] |
Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733 |
[8] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[9] |
Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447 |
[10] |
Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595 |
[11] |
Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039 |
[12] |
Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations and Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507 |
[13] |
Pierre Fabrie, Alain Miranville. Exponential attractors for nonautonomous first-order evolution equations. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 225-240. doi: 10.3934/dcds.1998.4.225 |
[14] |
Xuewei Ju, Desheng Li. Global synchronising behavior of evolution equations with exponentially growing nonautonomous forcing. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1921-1944. doi: 10.3934/cpaa.2018091 |
[15] |
Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917 |
[16] |
Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023 |
[17] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023 |
[18] |
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181 |
[19] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[20] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]