Citation: |
[1] |
T. Cazenave, "Semilinear Schrödinger Equations," Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Providence, 2003. |
[2] |
D. G. de Figueiredo and Y. Jianfu, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal., Theory Methods Appl., 33 (1998), 211-234.doi: 10.1016/S0362-546X(97)00548-8. |
[3] |
D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of solutions and formation of singularities for a class of hyperbolic systems, in "Geometric optics and relates topics" (eds. F. Colombini and N. Lerner), Progress in Nonlinear Differential Equations and Their Applications, 32, Birkhäuser, (1997), 117-140. |
[4] |
M. Escobedo and M. A. Herrero, A uniqueness result for a semilinear reaction-diffusion system, Proc. Amer. Math. Soc., 112 (1991), 175-185.doi: 10.2307/2048495. |
[5] |
L. Fanelli, S. Lucente and E. Montefusco, Semilinear Hamiltonian Schrödinger systems, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 401-422.doi: 10.1504/IJDSDE.2011.042938. |
[6] |
L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear Schrödinger equations, J. Phys. A, 40 (2007), 14139-14150.doi: 10.1088/1751-8113/40/47/007. |
[7] |
F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schr\"odinger equation with critical power, Duke Math. J., 69 (1993), 427-453.doi: 10.1215/S0012-7094-93-06919-0. |
[8] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^\mathbb N$, Differ. Integral Equ., 9 (1996), 465-479. |
[9] |
J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system, Differ. Integral Equ., 9 (1996), 635-653. |
[10] |
T. Tao, Nonlinear dispersive equations: Local and global analysis, CBMS Regional Conference Series in Mathematics, 106 (2006). |