-
Previous Article
The historical changes of borders separating pure mathematics from applied mathematics
- DCDS-S Home
- This Issue
-
Next Article
Schrödinger type evolution equations with monotone nonlinearity of non-power type
Dispersive waves with multiple tunnel effect on a star-shaped network
1. | Université de Valenciennes et du Hainaut-Cambrésis, LAMAV, FR CNRS 2956, F-59313 Valenciennes, France |
2. | TU Darmstadt, Fachbereich Mathematik, Schloßgartenstraße 7, D-64289 Darmstadt, Germany, Germany |
References:
[1] |
F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect, Math. Methods Appl. Sci., 17 (1994), 697-752.
doi: 10.1002/mma.1670170904. |
[2] |
F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures," Mathematical Research, 91, Akademie Verlag, Berlin, 1996. |
[3] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks, in "Functional Analysis and Evolution Equations: The Günter Lumer Volume" (eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, Basel, (2007), 1-16.
doi: 10.1007/978-3-7643-7794-6_1. |
[4] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ., 12 (2012), 513-545 arXiv:1012.3068v1.
doi: 10.1007/s00028-012-0143-5. |
[5] |
F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network, Z. Angew. Math. Mech., 83 (2003), 105-118.
doi: 10.1002/zamm.200310010. |
[6] |
F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets, Math. Methods Appl. Sci., 27 (2004), 1145-1195.
doi: 10.1002/mma.484. |
[7] |
F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity, Nonlinear Anal., 69 (2008), 408-424.
doi: 10.1016/j.na.2007.05.028. |
[8] |
J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks Results Math., 47 (2005), 199-225. |
[9] |
S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations, 247 (2009), 1229-1248.
doi: 10.1016/j.jde.2009.04.013. |
[10] |
Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel," Thèse de Doctorat, Université de Valenciennes, France, 2004. |
[11] |
J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity, Annals of Physics, 228 (1993), 184-202.
doi: 10.1006/aphy.1993.1092. |
[12] |
N. Dunford and J. T. Schwartz, "Linear Operators II," Wiley Interscience, New York, 1963. |
[13] |
A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I France, 2 (1992), 1693-1698. |
[14] |
A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling, Ann. Physik (Leipzig), 10 (2001), 707-712. |
[15] |
V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem,, preprint, ().
|
[16] |
M. Pozar, "Microwave Engineering," Addison-Wesley, New York, 1990. |
[17] |
J. Weidmann, "Spectral Theory of Ordinary Differential Operators," Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987. |
show all references
References:
[1] |
F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect, Math. Methods Appl. Sci., 17 (1994), 697-752.
doi: 10.1002/mma.1670170904. |
[2] |
F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures," Mathematical Research, 91, Akademie Verlag, Berlin, 1996. |
[3] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks, in "Functional Analysis and Evolution Equations: The Günter Lumer Volume" (eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, Basel, (2007), 1-16.
doi: 10.1007/978-3-7643-7794-6_1. |
[4] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ., 12 (2012), 513-545 arXiv:1012.3068v1.
doi: 10.1007/s00028-012-0143-5. |
[5] |
F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network, Z. Angew. Math. Mech., 83 (2003), 105-118.
doi: 10.1002/zamm.200310010. |
[6] |
F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets, Math. Methods Appl. Sci., 27 (2004), 1145-1195.
doi: 10.1002/mma.484. |
[7] |
F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity, Nonlinear Anal., 69 (2008), 408-424.
doi: 10.1016/j.na.2007.05.028. |
[8] |
J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks Results Math., 47 (2005), 199-225. |
[9] |
S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations, 247 (2009), 1229-1248.
doi: 10.1016/j.jde.2009.04.013. |
[10] |
Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel," Thèse de Doctorat, Université de Valenciennes, France, 2004. |
[11] |
J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity, Annals of Physics, 228 (1993), 184-202.
doi: 10.1006/aphy.1993.1092. |
[12] |
N. Dunford and J. T. Schwartz, "Linear Operators II," Wiley Interscience, New York, 1963. |
[13] |
A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I France, 2 (1992), 1693-1698. |
[14] |
A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling, Ann. Physik (Leipzig), 10 (2001), 707-712. |
[15] |
V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem,, preprint, ().
|
[16] |
M. Pozar, "Microwave Engineering," Addison-Wesley, New York, 1990. |
[17] |
J. Weidmann, "Spectral Theory of Ordinary Differential Operators," Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987. |
[1] |
Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257 |
[2] |
Fabrizio Colombo, Graziano Gentili, Irene Sabadini and Daniele C. Struppa. A functional calculus in a noncommutative setting. Electronic Research Announcements, 2007, 14: 60-68. doi: 10.3934/era.2007.14.60 |
[3] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[4] |
Vladimir V. Kisil. Mobius transformations and monogenic functional calculus. Electronic Research Announcements, 1996, 2: 26-33. |
[5] |
Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733 |
[6] |
Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023 |
[7] |
Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099 |
[8] |
Hassan Emamirad, Arnaud Rougirel. A functional calculus approach for the rational approximation with nonuniform partitions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 955-972. doi: 10.3934/dcds.2008.22.955 |
[9] |
Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147 |
[10] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[11] |
Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014 |
[12] |
Delfina Gómez, Sergey A. Nazarov, Eugenia Pérez. Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions. Networks and Heterogeneous Media, 2011, 6 (1) : 1-35. doi: 10.3934/nhm.2011.6.1 |
[13] |
Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic and Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625 |
[14] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[15] |
Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713 |
[16] |
Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315 |
[17] |
Alessandra Pluda. Evolution of spoon-shaped networks. Networks and Heterogeneous Media, 2016, 11 (3) : 509-526. doi: 10.3934/nhm.2016007 |
[18] |
Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic and Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473 |
[19] |
Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030 |
[20] |
Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial and Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]