-
Previous Article
Intertwining semiclassical solutions to a Schrödinger-Newton system
- DCDS-S Home
- This Issue
-
Next Article
On mathematical contributions of Petr Petrovich Zabreĭko
Chaos in forced impact systems
1. | Dipartimento di Ingegneria Industriale e Scienze Matematiche |
2. | Marche Polytecnic University, Via Brecce Bianche 1 |
3. | 60131 Ancona |
4. | Department of Mathematical Analysis and Numerical Mathematics |
5. | Comenius University |
6. | Mlynsk dolina, 842 48 Bratislava |
References:
[1] |
Nonlinear Analysis TMA, 21 (1993), 207-218, 219-225.
doi: 10.1016/0362-546X(93)90111-5. |
[2] | |
[3] |
J. Integral Equations Operator Theory, 16 (1993), 15-37.
doi: 10.1007/BF01196600. |
[4] |
Nonlinear Analysis TMA, 62 (2005), 1317-1331.
doi: 10.1016/j.na.2005.04.033. |
[5] |
Mathematical Problems in Engineering, 2006 (2006), 1-13.
doi: 10.1155/MPE/2006/85349. |
[6] | |
[7] |
J. Dynamics Differential Equations, 23 (2011), 495-540.
doi: 10.1007/s10884-010-9197-7. |
[8] |
J. Dynamics Differential Equations, 20 (2008), 337-376.
doi: 10.1007/s10884-007-9087-9. |
[9] |
Annali di Matematica Pura ed Applicata, 189 (2010), 615-642.
doi: 10.1007/s10231-010-0128-3. |
[10] |
J. Differential Equations, 248 (2010), 2227-2262.
doi: 10.1016/j.jde.2009.11.003. |
[11] |
J. Differential Equations, 86 (1990), 342-366.
doi: 10.1016/0022-0396(90)90034-M. |
[12] | |
[13] |
Lecture Notes in Control and Information Sciences, Springer, Berlin, 1996. |
[14] | |
[15] |
Dynamical Systems, 17 (2002), 389-420.
doi: 10.1080/1468936021000041654. |
[16] | |
[17] |
Computers and Mathematics with Applications, 50 (2005), 445-458.
doi: 10.1016/j.camwa.2005.03.007. |
[18] |
Springer, 2008.
doi: 10.1007/978-1-4020-8724-0. |
[19] | |
[20] | |
[21] |
J. Difference Equations and Applications, 6 (2000), 577-623.
doi: 10.1080/10236190008808247. |
[22] |
Nonlinear Analysis RWA, 11 (2010), 472-479.
doi: 10.1016/j.nonrwa.2008.12.001. |
[23] |
Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[24] |
Springer, Berlin, 2000.
doi: 10.1007/BFb0103843. |
[25] | |
[26] |
Int. J. Bif. Chaos, 15 (2005), 1901-1918.
doi: 10.1142/S0218127405013046. |
[27] | |
[28] |
Proc. Roy. Soc. Edinburgh, 116A (1990), 295-325.
doi: 10.1017/S0308210500031528. |
[29] |
preprint, arXiv:0909.4354v1. |
[30] |
Trans. Amer. Math. Soc., 314 (1989), 63-105.
doi: 10.2307/2001437. |
[31] |
J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[32] |
Z. Angew. Math. Phys. (ZAMP), 40 (1989), 592-602.
doi: 10.1007/BF00944809. |
[33] | |
[34] | |
[35] |
Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292-318.
doi: 10.1007/BF00946632. |
[36] | |
[37] |
Nonlinear Analysis TMA, 71 (2009), 418-426.
doi: 10.1016/j.na.2008.10.120. |
show all references
References:
[1] |
Nonlinear Analysis TMA, 21 (1993), 207-218, 219-225.
doi: 10.1016/0362-546X(93)90111-5. |
[2] | |
[3] |
J. Integral Equations Operator Theory, 16 (1993), 15-37.
doi: 10.1007/BF01196600. |
[4] |
Nonlinear Analysis TMA, 62 (2005), 1317-1331.
doi: 10.1016/j.na.2005.04.033. |
[5] |
Mathematical Problems in Engineering, 2006 (2006), 1-13.
doi: 10.1155/MPE/2006/85349. |
[6] | |
[7] |
J. Dynamics Differential Equations, 23 (2011), 495-540.
doi: 10.1007/s10884-010-9197-7. |
[8] |
J. Dynamics Differential Equations, 20 (2008), 337-376.
doi: 10.1007/s10884-007-9087-9. |
[9] |
Annali di Matematica Pura ed Applicata, 189 (2010), 615-642.
doi: 10.1007/s10231-010-0128-3. |
[10] |
J. Differential Equations, 248 (2010), 2227-2262.
doi: 10.1016/j.jde.2009.11.003. |
[11] |
J. Differential Equations, 86 (1990), 342-366.
doi: 10.1016/0022-0396(90)90034-M. |
[12] | |
[13] |
Lecture Notes in Control and Information Sciences, Springer, Berlin, 1996. |
[14] | |
[15] |
Dynamical Systems, 17 (2002), 389-420.
doi: 10.1080/1468936021000041654. |
[16] | |
[17] |
Computers and Mathematics with Applications, 50 (2005), 445-458.
doi: 10.1016/j.camwa.2005.03.007. |
[18] |
Springer, 2008.
doi: 10.1007/978-1-4020-8724-0. |
[19] | |
[20] | |
[21] |
J. Difference Equations and Applications, 6 (2000), 577-623.
doi: 10.1080/10236190008808247. |
[22] |
Nonlinear Analysis RWA, 11 (2010), 472-479.
doi: 10.1016/j.nonrwa.2008.12.001. |
[23] |
Springer-Verlag, Berlin, 1984.
doi: 10.1007/978-3-642-69409-7. |
[24] |
Springer, Berlin, 2000.
doi: 10.1007/BFb0103843. |
[25] | |
[26] |
Int. J. Bif. Chaos, 15 (2005), 1901-1918.
doi: 10.1142/S0218127405013046. |
[27] | |
[28] |
Proc. Roy. Soc. Edinburgh, 116A (1990), 295-325.
doi: 10.1017/S0308210500031528. |
[29] |
preprint, arXiv:0909.4354v1. |
[30] |
Trans. Amer. Math. Soc., 314 (1989), 63-105.
doi: 10.2307/2001437. |
[31] |
J. Differential Equations, 55 (1984), 225-256.
doi: 10.1016/0022-0396(84)90082-2. |
[32] |
Z. Angew. Math. Phys. (ZAMP), 40 (1989), 592-602.
doi: 10.1007/BF00944809. |
[33] | |
[34] | |
[35] |
Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292-318.
doi: 10.1007/BF00946632. |
[36] | |
[37] |
Nonlinear Analysis TMA, 71 (2009), 418-426.
doi: 10.1016/j.na.2008.10.120. |
[1] |
Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687 |
[2] |
Matthew Nicol. Induced maps of hyperbolic Bernoulli systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 147-154. doi: 10.3934/dcds.2001.7.147 |
[3] |
P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1 |
[4] |
Yi-Chiuan Chen. Bernoulli shift for second order recurrence relations near the anti-integrable limit. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 587-598. doi: 10.3934/dcdsb.2005.5.587 |
[5] |
Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305 |
[6] |
A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100 |
[7] |
Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008 |
[8] |
Sebastian Springer, Heikki Haario, Vladimir Shemyakin, Leonid Kalachev, Denis Shchepakin. Robust parameter estimation of chaotic systems. Inverse Problems and Imaging, 2019, 13 (6) : 1189-1212. doi: 10.3934/ipi.2019053 |
[9] |
M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343 |
[10] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[11] |
Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181 |
[12] |
Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785 |
[13] |
Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i |
[14] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116 |
[15] |
Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017 |
[16] |
Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011 |
[17] |
Fátima Drubi, Santiago Ibáñez, David Rivela. Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 599-615. doi: 10.3934/dcdsb.2019256 |
[18] |
Hamid Norouzi Nav, Mohammad Reza Jahed Motlagh, Ahmad Makui. Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1123-1141. doi: 10.3934/jimo.2018002 |
[19] |
Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235 |
[20] |
Noah H. Rhee, PaweŁ Góra, Majid Bani-Yaghoub. Predicting and estimating probability density functions of chaotic systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 297-319. doi: 10.3934/dcdsb.2017144 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]