-
Previous Article
Fatigue accumulation in an oscillating plate
- DCDS-S Home
- This Issue
-
Next Article
Chaos in forced impact systems
Intertwining semiclassical solutions to a Schrödinger-Newton system
1. | Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari |
2. | via Orabona 4, 70125 Bari |
3. | Instituto de Matemticas, Universidad Nacional Autnoma de Mxico |
4. | Circuito Exterior, C.U., 04510 Mxico D.F. |
5. | Dipartimento di Matematica ed Applicazioni |
6. | Universit di Milano-Bicocca |
7. | edificio U5, via R. Cozzi 53, I-20125 Milano |
References:
[1] |
J. Fixed Point Theory Appl., 10 (2011), 147-180.
doi: 10.1007/s11784-011-0053-0. |
[2] |
Math. Z., 248 (2004), 423-443.
doi: 10.1007/s00209-004-0663-y. |
[3] |
Nonlinearity, 22 (2009), 2309-2331.
doi: 10.1088/0951-7715/22/9/013. |
[4] |
Commun. Pure Appl. Anal., 9 (2010), 1263-1281.
doi: 10.3934/cpaa.2010.9.1263. |
[5] |
Z. Angew. Math. Phys. 63 (2012), 233-248.
doi: 10.1007/s00033-011-0166-8. |
[6] |
Proc. Roy. Soc. Edinburgh, 140 A (2010), 973-1009.
doi: 10.1017/S0308210509000584. |
[7] |
J. Reine Angew. Math., 418 (1991), 1-29.
doi: 10.1007/BF02566437. |
[8] |
Nonlinear Differ. Equ. Appl. (NoDea), 17 (2010), 229-248.
doi: 10.1007/s00030-009-0051-8. |
[9] |
Walter de Gruyter, Berlin-New York, 1987.
doi: 10.1515/9783110858372.312. |
[10] |
in "Séminaire: Équations aux Dérivées Partielles 2003-2004" Exp. No. XIX, 26 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, (2004). |
[11] |
Comm. Math. Phys., 225 (2002), 223-274.
doi: 10.1007/s002200100579. |
[12] |
Nonlinearity, 16 (2003), 101-122.
doi: 10.1088/0951-7715/16/1/307. |
[13] | |
[14] | |
[15] |
Ann. Inst. Henry Poincaré, Analyse Non Linéaire, 1 (1984), 109-145 and 223-283. |
[16] |
Nonlinear Anal. T.M.A., 4 (1980), 1063-1073.
doi: 10.1016/0362-546X(80)90016-4. |
[17] |
Arch. Rational Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[18] |
Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[19] |
Nonlinearity, 12 (1999), 201-216.
doi: 10.1088/0951-7715/12/2/002. |
[20] |
Commun. Pure Appl. Anal., 9 (2010), 1411-1419.
doi: 10.3934/cpaa.2010.9.1411. |
[21] | |
[22] |
Gen. Rel. Grav., 28 (1996), 581-600.
doi: 10.1007/BF02105068. |
[23] |
R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.
doi: 10.1098/rsta.1998.0256. |
[24] | |
[25] |
Nonlinear Analysis, 72 (2010), 3842-3856.
doi: 10.1016/j.na.2010.01.021. |
[26] |
Physics Letters A, 280 (2001), 173-176.
doi: 10.1016/S0375-9601(01)00059-7. |
[27] |
J. Math. Phys., 50 (2009), 012905.
doi: 10.1063/1.3060169. |
[28] |
PNLDE 24, Birkhäuser, Boston-Basel-Berlin, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
J. Fixed Point Theory Appl., 10 (2011), 147-180.
doi: 10.1007/s11784-011-0053-0. |
[2] |
Math. Z., 248 (2004), 423-443.
doi: 10.1007/s00209-004-0663-y. |
[3] |
Nonlinearity, 22 (2009), 2309-2331.
doi: 10.1088/0951-7715/22/9/013. |
[4] |
Commun. Pure Appl. Anal., 9 (2010), 1263-1281.
doi: 10.3934/cpaa.2010.9.1263. |
[5] |
Z. Angew. Math. Phys. 63 (2012), 233-248.
doi: 10.1007/s00033-011-0166-8. |
[6] |
Proc. Roy. Soc. Edinburgh, 140 A (2010), 973-1009.
doi: 10.1017/S0308210509000584. |
[7] |
J. Reine Angew. Math., 418 (1991), 1-29.
doi: 10.1007/BF02566437. |
[8] |
Nonlinear Differ. Equ. Appl. (NoDea), 17 (2010), 229-248.
doi: 10.1007/s00030-009-0051-8. |
[9] |
Walter de Gruyter, Berlin-New York, 1987.
doi: 10.1515/9783110858372.312. |
[10] |
in "Séminaire: Équations aux Dérivées Partielles 2003-2004" Exp. No. XIX, 26 pp., Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, (2004). |
[11] |
Comm. Math. Phys., 225 (2002), 223-274.
doi: 10.1007/s002200100579. |
[12] |
Nonlinearity, 16 (2003), 101-122.
doi: 10.1088/0951-7715/16/1/307. |
[13] | |
[14] | |
[15] |
Ann. Inst. Henry Poincaré, Analyse Non Linéaire, 1 (1984), 109-145 and 223-283. |
[16] |
Nonlinear Anal. T.M.A., 4 (1980), 1063-1073.
doi: 10.1016/0362-546X(80)90016-4. |
[17] |
Arch. Rational Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3. |
[18] |
Topology of the Universe Conference (Cleveland, OH, 1997), Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019. |
[19] |
Nonlinearity, 12 (1999), 201-216.
doi: 10.1088/0951-7715/12/2/002. |
[20] |
Commun. Pure Appl. Anal., 9 (2010), 1411-1419.
doi: 10.3934/cpaa.2010.9.1411. |
[21] | |
[22] |
Gen. Rel. Grav., 28 (1996), 581-600.
doi: 10.1007/BF02105068. |
[23] |
R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.
doi: 10.1098/rsta.1998.0256. |
[24] | |
[25] |
Nonlinear Analysis, 72 (2010), 3842-3856.
doi: 10.1016/j.na.2010.01.021. |
[26] |
Physics Letters A, 280 (2001), 173-176.
doi: 10.1016/S0375-9601(01)00059-7. |
[27] |
J. Math. Phys., 50 (2009), 012905.
doi: 10.1063/1.3060169. |
[28] |
PNLDE 24, Birkhäuser, Boston-Basel-Berlin, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Kei Nakamura, Tohru Ozawa. Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 789-801. doi: 10.3934/dcds.2013.33.789 |
[2] |
Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087 |
[3] |
Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257 |
[4] |
Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021016 |
[5] |
Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 |
[6] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[7] |
Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071 |
[8] |
Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125 |
[9] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1967-1981. doi: 10.3934/dcdss.2021008 |
[10] |
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128 |
[11] |
Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109 |
[12] |
Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure and Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771 |
[13] |
Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831 |
[14] |
Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7 |
[15] |
Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487 |
[16] |
Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025 |
[17] |
Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033 |
[18] |
J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445 |
[19] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[20] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]