August  2013, 6(4): 985-997. doi: 10.3934/dcdss.2013.6.985

Equivariant Conley index versus degree for equivariant gradient maps

1. 

Faculty of Mathematics and Computer Science

2. 

Nicolaus Copernicus University

3. 

ul. Chopina 12/18, PL-87-100 Toru?

Received  October 2011 Revised  April 2012 Published  December 2012

In this article we study the relationship between the degree forinvariant strongly indefinite functionals and the equivariantConley index. We prove that, under certain assumptions, achange of the equivariant Conley indices is equivalent to thechange of the degrees for equivariant gradient maps. Moreover, weformulate easy to verify sufficient conditions for theexistence of a global bifurcation of critical orbits of invariantstrongly indefinite functionals.
Citation: Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985
References:
[1]

J. Anal. Math., 76 (1998), 321-335. doi: 10.1007/BF02786940.  Google Scholar

[2]

J. Fixed Point Theory App., 8 (2010), 1-74. doi: 10.1007/s11784-010-0033-9.  Google Scholar

[3]

Israel Math. Conf. Proc., Conf. Nonlinear Analysis and Optimization, Haifa, Israel, (2008), AMS Contemporary Mathematics, 514 (2010), 45-84. doi: 10.1090/conm/514/10099.  Google Scholar

[4]

Kluwer Academic Publishers, 2004.  Google Scholar

[5]

J. Fixed P. Th. and Appl., 7 (2010), 145-160. doi: 10.1007/s11784-010-0013-0.  Google Scholar

[6]

Lect. Notes in Math., 1560, Springer-Verlag, Berlin, 1993.  Google Scholar

[7]

Math. Z., 127 (1972), 105-126.  Google Scholar

[8]

Academic Press, Inc. LTD, 1972.  Google Scholar

[9]

Nonl. Anal. TMA, 12 (1988), 51-61. doi: 10.1016/0362-546X(88)90012-0.  Google Scholar

[10]

CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, R. I., 1978.  Google Scholar

[11]

Ann. Inst. H.Poincaré, Ana. Non Lin., 2, (1985), 329-370.  Google Scholar

[12]

Fund. Math., 185 (2005), 1-18. doi: 10.4064/fm185-1-1.  Google Scholar

[13]

Springer-Verlag, Berlin, 1979.  Google Scholar

[14]

Walter de Gruyter, Berlin-New York, 1987. doi: 10.1515/9783110858372.312.  Google Scholar

[15]

Springer-Verlag, Berlin Heidelberg New York, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[16]

Nonl. Anal. TMA, 36 (1999), 101-118. doi: 10.1016/S0362-546X(98)00017-0.  Google Scholar

[17]

Erg. Th. and Dynam. Sys., 7 (1987), 93-103. doi: 10.1017/S0143385700003825.  Google Scholar

[18]

Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDLE 27, Birkhäuser, (1997), 247-272.  Google Scholar

[19]

Studia Math., 134, (1999), 217-233.  Google Scholar

[20]

Nonl. Anal TMA, 74 (2011), 1823-1834. doi: 10.1016/j.na.2010.10.055.  Google Scholar

[21]

Mem. AMS, 174, 1976.  Google Scholar

[22]

Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDE, 15, Birkhäuser, (1995), 341-463.  Google Scholar

[23]

J. Diff. Equat., 170 (2001), 22-50. doi: 10.1006/jdeq.2000.3818.  Google Scholar

[24]

Nonl. Anal. TMA, 51 (2002), 33-66. doi: 10.1016/S0362-546X(01)00811-2.  Google Scholar

[25]

Nonl. Anal. TMA, 73 (2010), 2779-2791. doi: 10.1016/j.na.2010.06.001.  Google Scholar

[26]

Conf. Sem. Mat. Univ. Bari, 132 (1973).  Google Scholar

[27]

Man. Math., 63 (1989), 99-114. doi: 10.1007/BF01173705.  Google Scholar

[28]

Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, (2002), 393-460. doi: 10.1016/S1874-575X(02)80030-3.  Google Scholar

[29]

Courant Institute of Mathematical Sciences, New York University, 1974.  Google Scholar

[30]

Comm. Pure Appl. Math., 23 (1970), 939-961.  Google Scholar

[31]

J. Func. Anal., 7 (1971), 487-513.  Google Scholar

[32]

Contributions to Nonlinear Functional Analysis, E Academic Press, New York, (1971), 11-36.  Google Scholar

[33]

J. Diff. Equat., 202 (2004), 284-305. doi: 10.1016/j.jde.2004.03.037.  Google Scholar

[34]

Nonl. Anal. TMA, 68 (2008), 1479-1516. doi: 10.1016/j.na.2006.12.039.  Google Scholar

[35]

Trans. Amer. Math. Soc., 269 (1982), 351-382. doi: 10.2307/1998452.  Google Scholar

[36]

Nonl. Anal. TMA, 23 (1994), 83-102. doi: 10.1016/0362-546X(94)90253-4.  Google Scholar

[37]

Topol. Meth. Nonl. Anal., 9 (1997), 383-417.  Google Scholar

[38]

Milan J. Math., 73 (2005), 103-144. doi: 10.1007/s00032-005-0040-2.  Google Scholar

[39]

Adv. Nonl. Stud., 11 (2011), 929-940.  Google Scholar

[40]

TAMS, 291 (1985), 1-41. doi: 10.2307/1999893.  Google Scholar

[41]

Bull. London Math. Soc., 22 (1990), 113-140. doi: 10.1112/blms/22.2.113.  Google Scholar

[42]

Invent. Math., 100 (1990), 63-95. doi: 10.1007/BF01231181.  Google Scholar

[43]

Fundamental Principles of Mathematical Science, 258, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[44]

Math. Z., 125 (1972), 359-364.  Google Scholar

[45]

CMBS Regional Conf. Ser. in Math., 5, AMS, Providence, R.I., 1970.  Google Scholar

show all references

References:
[1]

J. Anal. Math., 76 (1998), 321-335. doi: 10.1007/BF02786940.  Google Scholar

[2]

J. Fixed Point Theory App., 8 (2010), 1-74. doi: 10.1007/s11784-010-0033-9.  Google Scholar

[3]

Israel Math. Conf. Proc., Conf. Nonlinear Analysis and Optimization, Haifa, Israel, (2008), AMS Contemporary Mathematics, 514 (2010), 45-84. doi: 10.1090/conm/514/10099.  Google Scholar

[4]

Kluwer Academic Publishers, 2004.  Google Scholar

[5]

J. Fixed P. Th. and Appl., 7 (2010), 145-160. doi: 10.1007/s11784-010-0013-0.  Google Scholar

[6]

Lect. Notes in Math., 1560, Springer-Verlag, Berlin, 1993.  Google Scholar

[7]

Math. Z., 127 (1972), 105-126.  Google Scholar

[8]

Academic Press, Inc. LTD, 1972.  Google Scholar

[9]

Nonl. Anal. TMA, 12 (1988), 51-61. doi: 10.1016/0362-546X(88)90012-0.  Google Scholar

[10]

CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, R. I., 1978.  Google Scholar

[11]

Ann. Inst. H.Poincaré, Ana. Non Lin., 2, (1985), 329-370.  Google Scholar

[12]

Fund. Math., 185 (2005), 1-18. doi: 10.4064/fm185-1-1.  Google Scholar

[13]

Springer-Verlag, Berlin, 1979.  Google Scholar

[14]

Walter de Gruyter, Berlin-New York, 1987. doi: 10.1515/9783110858372.312.  Google Scholar

[15]

Springer-Verlag, Berlin Heidelberg New York, 2000. doi: 10.1007/978-3-642-56936-4.  Google Scholar

[16]

Nonl. Anal. TMA, 36 (1999), 101-118. doi: 10.1016/S0362-546X(98)00017-0.  Google Scholar

[17]

Erg. Th. and Dynam. Sys., 7 (1987), 93-103. doi: 10.1017/S0143385700003825.  Google Scholar

[18]

Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDLE 27, Birkhäuser, (1997), 247-272.  Google Scholar

[19]

Studia Math., 134, (1999), 217-233.  Google Scholar

[20]

Nonl. Anal TMA, 74 (2011), 1823-1834. doi: 10.1016/j.na.2010.10.055.  Google Scholar

[21]

Mem. AMS, 174, 1976.  Google Scholar

[22]

Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDE, 15, Birkhäuser, (1995), 341-463.  Google Scholar

[23]

J. Diff. Equat., 170 (2001), 22-50. doi: 10.1006/jdeq.2000.3818.  Google Scholar

[24]

Nonl. Anal. TMA, 51 (2002), 33-66. doi: 10.1016/S0362-546X(01)00811-2.  Google Scholar

[25]

Nonl. Anal. TMA, 73 (2010), 2779-2791. doi: 10.1016/j.na.2010.06.001.  Google Scholar

[26]

Conf. Sem. Mat. Univ. Bari, 132 (1973).  Google Scholar

[27]

Man. Math., 63 (1989), 99-114. doi: 10.1007/BF01173705.  Google Scholar

[28]

Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, (2002), 393-460. doi: 10.1016/S1874-575X(02)80030-3.  Google Scholar

[29]

Courant Institute of Mathematical Sciences, New York University, 1974.  Google Scholar

[30]

Comm. Pure Appl. Math., 23 (1970), 939-961.  Google Scholar

[31]

J. Func. Anal., 7 (1971), 487-513.  Google Scholar

[32]

Contributions to Nonlinear Functional Analysis, E Academic Press, New York, (1971), 11-36.  Google Scholar

[33]

J. Diff. Equat., 202 (2004), 284-305. doi: 10.1016/j.jde.2004.03.037.  Google Scholar

[34]

Nonl. Anal. TMA, 68 (2008), 1479-1516. doi: 10.1016/j.na.2006.12.039.  Google Scholar

[35]

Trans. Amer. Math. Soc., 269 (1982), 351-382. doi: 10.2307/1998452.  Google Scholar

[36]

Nonl. Anal. TMA, 23 (1994), 83-102. doi: 10.1016/0362-546X(94)90253-4.  Google Scholar

[37]

Topol. Meth. Nonl. Anal., 9 (1997), 383-417.  Google Scholar

[38]

Milan J. Math., 73 (2005), 103-144. doi: 10.1007/s00032-005-0040-2.  Google Scholar

[39]

Adv. Nonl. Stud., 11 (2011), 929-940.  Google Scholar

[40]

TAMS, 291 (1985), 1-41. doi: 10.2307/1999893.  Google Scholar

[41]

Bull. London Math. Soc., 22 (1990), 113-140. doi: 10.1112/blms/22.2.113.  Google Scholar

[42]

Invent. Math., 100 (1990), 63-95. doi: 10.1007/BF01231181.  Google Scholar

[43]

Fundamental Principles of Mathematical Science, 258, Springer-Verlag, New York-Berlin, 1983.  Google Scholar

[44]

Math. Z., 125 (1972), 359-364.  Google Scholar

[45]

CMBS Regional Conf. Ser. in Math., 5, AMS, Providence, R.I., 1970.  Google Scholar

[1]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

[2]

Jochen Brüning, Franz W. Kamber, Ken Richardson. The equivariant index theorem for transversally elliptic operators and the basic index theorem for Riemannian foliations. Electronic Research Announcements, 2010, 17: 138-154. doi: 10.3934/era.2010.17.138

[3]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[4]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[5]

Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107

[6]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete & Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[7]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184

[10]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[11]

Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244

[12]

Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617

[13]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[14]

Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056

[15]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[16]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[17]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[18]

Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237

[19]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[20]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]