October  2014, 7(5): 1065-1077. doi: 10.3934/dcdss.2014.7.1065

A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium

1. 

Institute of Applied Mathematics, Interdisciplinary Center of Scienti c Computing and BIOQUANT, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany

2. 

Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Received  March 2013 Published  May 2014

We present modeling of an incompressible viscous flow through a fracture adjacent to a porous medium. A fast stationary flow, predominantly tangential to the porous medium is considered. Slow flow in such setting can be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear filtration law in the porous medium and a non- linear interface law are expected. In this paper we rigorously derive a quadratic effective slip interface law which holds for a range of Reynolds numbers and fracture widths. The porous medium flow is described by the Darcy law. The result shows that the interface slip law can be nonlinear, independently of the regime for the bulk flow. Since most of the interface and boundary slip laws are obtained via upscaling of complex systems, the result indicates that studying the inviscid limits for the Navier-Stokes equations with linear slip law at the boundary should be rethought.
Citation: Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065
References:
[1]

G. Allaire, One-phase Newtonian flow, in Homogenization and Porous Media (ed. U. Hornung), Springer, 1997, 45-76. doi: 10.1007/978-1-4612-1920-0_3.

[2]

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207. doi: 10.1017/S0022112067001375.

[3]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure, in Calculus of Variations, Homogenization and Continuum Mechanics (eds. G. Bouchitté , G. Buttazzo and P. Suquet), World Scientific, 1994, 69-81.

[4]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure, Asymptotic Anal., 11 (1995), 241-262.

[5]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143-1155. doi: 10.1142/S021820259600047X.

[6]

T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations, Journal of Fluid Mechanics, 732 (2013), 510-536. doi: 10.1017/jfm.2013.416.

[7]

M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22 (2009), 315-426.

[8]

H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux, J. Mécan., 14 (1975), 73-108.

[9]

O. Iliev and V. Laptev, On numerical simulation of flow through oil filters, Computing and Visualization in Science, 6 (2004), 139-146. doi: 10.1007/s00791-003-0118-8.

[10]

W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Sci. - Ser. IV, 23 (1996), 403-465.

[11]

W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), 1111-1127. doi: 10.1137/S003613999833678X.

[12]

W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006-2028.

[13]

W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization, Transport in Porous Media, 78 (2009), 489-508. doi: 10.1007/s11242-009-9354-9.

[14]

M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd Revised edition, Springer-Verlag New York Inc., 1995.

[15]

Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls, Journal of Fluid Mechanics, 679 (2011), 77-100. doi: 10.1017/jfm.2011.124.

[16]

A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285-305. doi: 10.1137/110838248.

[17]

A. Mikelić, Homogenization theory and applications to filtration through porous media, in Filtration in Porous Media and Industrial Applications, (by M. Espedal, A.Fasano and A. Mikelić), Lecture Notes in Mathematics, 1734, Springer, Berlin, 2000, 127-214. doi: 10.1007/BFb0103977.

[18]

P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics, 1 (1971), 93-101.

[19]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media, Int. J. Heat Mass Transfer, 35 (1992), 927-943. doi: 10.1016/0017-9310(92)90258-T.

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, New York, 1980.

[21]

L. Tartar, Convergence of the homogenization process,, Appendix of [20]., (). 

[22]

R. Temam, Navier-Stokes Equations, 3rd revised edition, Elsevier Science Publishers, Amsterdam, 1984.

show all references

References:
[1]

G. Allaire, One-phase Newtonian flow, in Homogenization and Porous Media (ed. U. Hornung), Springer, 1997, 45-76. doi: 10.1007/978-1-4612-1920-0_3.

[2]

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207. doi: 10.1017/S0022112067001375.

[3]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure, in Calculus of Variations, Homogenization and Continuum Mechanics (eds. G. Bouchitté , G. Buttazzo and P. Suquet), World Scientific, 1994, 69-81.

[4]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure, Asymptotic Anal., 11 (1995), 241-262.

[5]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143-1155. doi: 10.1142/S021820259600047X.

[6]

T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations, Journal of Fluid Mechanics, 732 (2013), 510-536. doi: 10.1017/jfm.2013.416.

[7]

M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22 (2009), 315-426.

[8]

H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux, J. Mécan., 14 (1975), 73-108.

[9]

O. Iliev and V. Laptev, On numerical simulation of flow through oil filters, Computing and Visualization in Science, 6 (2004), 139-146. doi: 10.1007/s00791-003-0118-8.

[10]

W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Sci. - Ser. IV, 23 (1996), 403-465.

[11]

W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), 1111-1127. doi: 10.1137/S003613999833678X.

[12]

W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006-2028.

[13]

W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization, Transport in Porous Media, 78 (2009), 489-508. doi: 10.1007/s11242-009-9354-9.

[14]

M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd Revised edition, Springer-Verlag New York Inc., 1995.

[15]

Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls, Journal of Fluid Mechanics, 679 (2011), 77-100. doi: 10.1017/jfm.2011.124.

[16]

A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285-305. doi: 10.1137/110838248.

[17]

A. Mikelić, Homogenization theory and applications to filtration through porous media, in Filtration in Porous Media and Industrial Applications, (by M. Espedal, A.Fasano and A. Mikelić), Lecture Notes in Mathematics, 1734, Springer, Berlin, 2000, 127-214. doi: 10.1007/BFb0103977.

[18]

P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics, 1 (1971), 93-101.

[19]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media, Int. J. Heat Mass Transfer, 35 (1992), 927-943. doi: 10.1016/0017-9310(92)90258-T.

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, New York, 1980.

[21]

L. Tartar, Convergence of the homogenization process,, Appendix of [20]., (). 

[22]

R. Temam, Navier-Stokes Equations, 3rd revised edition, Elsevier Science Publishers, Amsterdam, 1984.

[1]

Linjie Xiong. Incompressible Limit of isentropic Navier-Stokes equations with Navier-slip boundary. Kinetic and Related Models, 2018, 11 (3) : 469-490. doi: 10.3934/krm.2018021

[2]

Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121

[3]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[4]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[5]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[6]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[7]

María Anguiano, Renata Bunoiu. Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15 (1) : 87-110. doi: 10.3934/nhm.2020004

[8]

Yat Tin Chow, Ali Pakzad. On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021270

[9]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[10]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[11]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[12]

Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228

[13]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[14]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[15]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[16]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[17]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[18]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[19]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[20]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]