Citation: |
[1] |
G. Allaire, One-phase Newtonian flow, in Homogenization and Porous Media (ed. U. Hornung), Springer, 1997, 45-76.doi: 10.1007/978-1-4612-1920-0_3. |
[2] |
G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.doi: 10.1017/S0022112067001375. |
[3] |
A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure, in Calculus of Variations, Homogenization and Continuum Mechanics (eds. G. Bouchitté , G. Buttazzo and P. Suquet), World Scientific, 1994, 69-81. |
[4] |
A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure, Asymptotic Anal., 11 (1995), 241-262. |
[5] |
A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143-1155.doi: 10.1142/S021820259600047X. |
[6] |
T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations, Journal of Fluid Mechanics, 732 (2013), 510-536.doi: 10.1017/jfm.2013.416. |
[7] |
M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22 (2009), 315-426. |
[8] |
H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux, J. Mécan., 14 (1975), 73-108. |
[9] |
O. Iliev and V. Laptev, On numerical simulation of flow through oil filters, Computing and Visualization in Science, 6 (2004), 139-146.doi: 10.1007/s00791-003-0118-8. |
[10] |
W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Sci. - Ser. IV, 23 (1996), 403-465. |
[11] |
W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), 1111-1127.doi: 10.1137/S003613999833678X. |
[12] |
W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006-2028. |
[13] |
W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization, Transport in Porous Media, 78 (2009), 489-508.doi: 10.1007/s11242-009-9354-9. |
[14] |
M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd Revised edition, Springer-Verlag New York Inc., 1995. |
[15] |
Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls, Journal of Fluid Mechanics, 679 (2011), 77-100.doi: 10.1017/jfm.2011.124. |
[16] |
A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285-305.doi: 10.1137/110838248. |
[17] |
A. Mikelić, Homogenization theory and applications to filtration through porous media, in Filtration in Porous Media and Industrial Applications, (by M. Espedal, A.Fasano and A. Mikelić), Lecture Notes in Mathematics, 1734, Springer, Berlin, 2000, 127-214.doi: 10.1007/BFb0103977. |
[18] |
P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics, 1 (1971), 93-101. |
[19] |
M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media, Int. J. Heat Mass Transfer, 35 (1992), 927-943.doi: 10.1016/0017-9310(92)90258-T. |
[20] |
E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, New York, 1980. |
[21] |
L. Tartar, Convergence of the homogenization process, Appendix of [20]. |
[22] |
R. Temam, Navier-Stokes Equations, 3rd revised edition, Elsevier Science Publishers, Amsterdam, 1984. |