\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium

Abstract Related Papers Cited by
  • We present modeling of an incompressible viscous flow through a fracture adjacent to a porous medium. A fast stationary flow, predominantly tangential to the porous medium is considered. Slow flow in such setting can be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear filtration law in the porous medium and a non- linear interface law are expected. In this paper we rigorously derive a quadratic effective slip interface law which holds for a range of Reynolds numbers and fracture widths. The porous medium flow is described by the Darcy law. The result shows that the interface slip law can be nonlinear, independently of the regime for the bulk flow. Since most of the interface and boundary slip laws are obtained via upscaling of complex systems, the result indicates that studying the inviscid limits for the Navier-Stokes equations with linear slip law at the boundary should be rethought.
    Mathematics Subject Classification: Primary: 35B27, 35Q30, 35Q35, 74Q15, 76D07, 76M50, 76S.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allaire, One-phase Newtonian flow, in Homogenization and Porous Media (ed. U. Hornung), Springer, 1997, 45-76.doi: 10.1007/978-1-4612-1920-0_3.

    [2]

    G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.doi: 10.1017/S0022112067001375.

    [3]

    A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure, in Calculus of Variations, Homogenization and Continuum Mechanics (eds. G. Bouchitté , G. Buttazzo and P. Suquet), World Scientific, 1994, 69-81.

    [4]

    A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure, Asymptotic Anal., 11 (1995), 241-262.

    [5]

    A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143-1155.doi: 10.1142/S021820259600047X.

    [6]

    T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations, Journal of Fluid Mechanics, 732 (2013), 510-536.doi: 10.1017/jfm.2013.416.

    [7]

    M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22 (2009), 315-426.

    [8]

    H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux, J. Mécan., 14 (1975), 73-108.

    [9]

    O. Iliev and V. Laptev, On numerical simulation of flow through oil filters, Computing and Visualization in Science, 6 (2004), 139-146.doi: 10.1007/s00791-003-0118-8.

    [10]

    W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid, Ann. Sc. Norm. Super. Pisa, Cl. Sci. - Ser. IV, 23 (1996), 403-465.

    [11]

    W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman, SIAM J. Appl. Math., 60 (2000), 1111-1127.doi: 10.1137/S003613999833678X.

    [12]

    W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006-2028.

    [13]

    W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization, Transport in Porous Media, 78 (2009), 489-508.doi: 10.1007/s11242-009-9354-9.

    [14]

    M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd Revised edition, Springer-Verlag New York Inc., 1995.

    [15]

    Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls, Journal of Fluid Mechanics, 679 (2011), 77-100.doi: 10.1017/jfm.2011.124.

    [16]

    A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285-305.doi: 10.1137/110838248.

    [17]

    A. Mikelić, Homogenization theory and applications to filtration through porous media, in Filtration in Porous Media and Industrial Applications, (by M. Espedal, A.Fasano and A. Mikelić), Lecture Notes in Mathematics, 1734, Springer, Berlin, 2000, 127-214.doi: 10.1007/BFb0103977.

    [18]

    P. G. Saffman, On the boundary condition at the interface of a porous medium, Studies in Applied Mathematics, 1 (1971), 93-101.

    [19]

    M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media, Int. J. Heat Mass Transfer, 35 (1992), 927-943.doi: 10.1016/0017-9310(92)90258-T.

    [20]

    E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer Verlag, New York, 1980.

    [21]

    L. Tartar, Convergence of the homogenization process, Appendix of [20].

    [22]

    R. Temam, Navier-Stokes Equations, 3rd revised edition, Elsevier Science Publishers, Amsterdam, 1984.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return