- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow
On one multidimensional compressible nonlocal model of the dissipative QG equations
1. | College of Applied Sciences, Beijing University of Technology, PingLeYuan100, Chaoyang District, Beijing 100124, China, China, China |
2. | Basic Courses Department, Institute of Disaster Prevention, Yanjiao, Sanhe City, Hebei Province, 065201, China |
References:
[1] |
H. Abidi and T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal., 40 (2008), 167-185.
doi: 10.1137/070682319. |
[2] |
G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physics D, 91 (1996), 349-375.
doi: 10.1016/0167-2789(95)00271-5. |
[3] |
P. Balodis and A. Córdoba, An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations, Advances in Mathematics, 214 (2007), 1-39.
doi: 10.1016/j.aim.2006.07.021. |
[4] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1998), 845-869.
doi: 10.1137/S0036139996313447. |
[5] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[6] |
L. Caffarelli and J. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Rational Mech. Anal., 202 (2011), 537-565.
doi: 10.1007/s00205-011-0420-4. |
[7] |
A. Castro and D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Advance in Mathematics, 219 (2008), 1916-1936.
doi: 10.1016/j.aim.2008.07.015. |
[8] |
A. Castro, D. Córdoba, F. Gancedo and R. Orive, Incompressible flow in porous media with fractional diffusion, Nonlinearity, 22 (2009), 1791-1815.
doi: 10.1088/0951-7715/22/8/002. |
[9] |
D. Chae, A. Córdoba, D. Córdoba and M. A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophis equations, Advance in Mathematics, 194 (2005), 203-223.
doi: 10.1016/j.aim.2004.06.004. |
[10] |
D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Comm. Math. Phys., 233 (2003), 297-311. |
[11] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7 (1994), 1498-1533.
doi: 10.1088/0951-7715/7/6/001. |
[12] |
P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.
doi: 10.1137/S0036141098337333. |
[13] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.
doi: 10.1007/s00220-004-1055-1. |
[14] |
A. P. Calderon and A Zygmund, On singular integrals, American J of Math., 78 (1956), 289-309.
doi: 10.2307/2372517. |
[15] |
H. Dong and D. Du, Global well-posedness and a dacay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 1095-1101.
doi: 10.3934/dcds.2008.21.1095. |
[16] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[17] |
N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys., 255 (2005), 161-181.
doi: 10.1007/s00220-004-1256-7. |
[18] |
T. Laurent, Local and global existence for an aggregation equation, Comm. in Parti. Diff. Equa., 32 (2007), 1941-1964.
doi: 10.1080/03605300701318955. |
[19] |
D. Li and J. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam., 26 (2010), 261-294.
doi: 10.4171/RMI/601. |
[20] |
D. Li, J. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332.
doi: 10.4171/RMI/602. |
[21] |
M. Schonbek, Decay of solutions to parabolic conservation laws, Commun. Partial Diff Eqns., 5 (1980), 449-473.
doi: 10.1080/0360530800882145. |
[22] |
M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.
doi: 10.1007/BF00752111. |
[23] |
M. Schonbek and T. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375.
doi: 10.1137/S0036141002409362. |
[24] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. |
[25] |
M. Taylor, Pseudodifferential Operators and Nonlinear P.D.E', Birkhäuser, 1993. |
[26] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron J. Differ. Eqns., 2001, (2001), 1-13. |
[27] |
J. Wu, Global solutions of the 2D dissipative quasi-geostrophic in Besov spaces, SIAM J. Math. Anal., 36 (2005), 1014-1030.
doi: 10.1137/S0036141003435576. |
[28] |
J. Wu, The Quasi-geostrophic equations and its two regularizations, Comm. Partial Differ. Eqns., 27 (2002), 1161-1181.
doi: 10.1081/PDE-120004898. |
[29] |
X. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic, J. Math. Anal. Appl., 339 (2008), 359-371.
doi: 10.1016/j.jmaa.2007.06.064. |
[30] |
Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071.
doi: 10.1088/0951-7715/21/9/008. |
show all references
References:
[1] |
H. Abidi and T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal., 40 (2008), 167-185.
doi: 10.1137/070682319. |
[2] |
G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physics D, 91 (1996), 349-375.
doi: 10.1016/0167-2789(95)00271-5. |
[3] |
P. Balodis and A. Córdoba, An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations, Advances in Mathematics, 214 (2007), 1-39.
doi: 10.1016/j.aim.2006.07.021. |
[4] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1998), 845-869.
doi: 10.1137/S0036139996313447. |
[5] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[6] |
L. Caffarelli and J. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Rational Mech. Anal., 202 (2011), 537-565.
doi: 10.1007/s00205-011-0420-4. |
[7] |
A. Castro and D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Advance in Mathematics, 219 (2008), 1916-1936.
doi: 10.1016/j.aim.2008.07.015. |
[8] |
A. Castro, D. Córdoba, F. Gancedo and R. Orive, Incompressible flow in porous media with fractional diffusion, Nonlinearity, 22 (2009), 1791-1815.
doi: 10.1088/0951-7715/22/8/002. |
[9] |
D. Chae, A. Córdoba, D. Córdoba and M. A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophis equations, Advance in Mathematics, 194 (2005), 203-223.
doi: 10.1016/j.aim.2004.06.004. |
[10] |
D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Comm. Math. Phys., 233 (2003), 297-311. |
[11] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7 (1994), 1498-1533.
doi: 10.1088/0951-7715/7/6/001. |
[12] |
P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.
doi: 10.1137/S0036141098337333. |
[13] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.
doi: 10.1007/s00220-004-1055-1. |
[14] |
A. P. Calderon and A Zygmund, On singular integrals, American J of Math., 78 (1956), 289-309.
doi: 10.2307/2372517. |
[15] |
H. Dong and D. Du, Global well-posedness and a dacay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 1095-1101.
doi: 10.3934/dcds.2008.21.1095. |
[16] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.
doi: 10.1007/s00222-006-0020-3. |
[17] |
N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys., 255 (2005), 161-181.
doi: 10.1007/s00220-004-1256-7. |
[18] |
T. Laurent, Local and global existence for an aggregation equation, Comm. in Parti. Diff. Equa., 32 (2007), 1941-1964.
doi: 10.1080/03605300701318955. |
[19] |
D. Li and J. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam., 26 (2010), 261-294.
doi: 10.4171/RMI/601. |
[20] |
D. Li, J. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332.
doi: 10.4171/RMI/602. |
[21] |
M. Schonbek, Decay of solutions to parabolic conservation laws, Commun. Partial Diff Eqns., 5 (1980), 449-473.
doi: 10.1080/0360530800882145. |
[22] |
M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.
doi: 10.1007/BF00752111. |
[23] |
M. Schonbek and T. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375.
doi: 10.1137/S0036141002409362. |
[24] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. |
[25] |
M. Taylor, Pseudodifferential Operators and Nonlinear P.D.E', Birkhäuser, 1993. |
[26] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron J. Differ. Eqns., 2001, (2001), 1-13. |
[27] |
J. Wu, Global solutions of the 2D dissipative quasi-geostrophic in Besov spaces, SIAM J. Math. Anal., 36 (2005), 1014-1030.
doi: 10.1137/S0036141003435576. |
[28] |
J. Wu, The Quasi-geostrophic equations and its two regularizations, Comm. Partial Differ. Eqns., 27 (2002), 1161-1181.
doi: 10.1081/PDE-120004898. |
[29] |
X. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic, J. Math. Anal. Appl., 339 (2008), 359-371.
doi: 10.1016/j.jmaa.2007.06.064. |
[30] |
Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071.
doi: 10.1088/0951-7715/21/9/008. |
[1] |
Tongtong Liang, Yejuan Wang. Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4697-4726. doi: 10.3934/dcdsb.2020309 |
[2] |
Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197 |
[3] |
Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095 |
[4] |
Tsukasa Iwabuchi. On analyticity up to the boundary for critical quasi-geostrophic equation in the half space. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1209-1224. doi: 10.3934/cpaa.2022016 |
[5] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6377-6385. doi: 10.3934/dcdsb.2021023 |
[6] |
T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171 |
[7] |
May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179 |
[8] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5135-5148. doi: 10.3934/dcdsb.2020336 |
[9] |
Yong Zhou. Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 525-532. doi: 10.3934/dcds.2006.14.525 |
[10] |
Ludovic Godard-Cadillac. Vortex collapses for the Euler and Quasi-Geostrophic models. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3143-3168. doi: 10.3934/dcds.2022012 |
[11] |
Colin Cotter, Dan Crisan, Darryl Holm, Wei Pan, Igor Shevchenko. Modelling uncertainty using stochastic transport noise in a 2-layer quasi-geostrophic model. Foundations of Data Science, 2020, 2 (2) : 173-205. doi: 10.3934/fods.2020010 |
[12] |
T. Tachim Medjo. Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1119-1140. doi: 10.3934/cpaa.2014.13.1119 |
[13] |
Qingshan Chen. On the well-posedness of the inviscid multi-layer quasi-geostrophic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3215-3237. doi: 10.3934/dcds.2019133 |
[14] |
Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361 |
[15] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[16] |
Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023 |
[17] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025 |
[18] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093 |
[19] |
Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152 |
[20] |
Maria Schonbek, Tomas Schonbek. Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1277-1304. doi: 10.3934/dcds.2005.13.1277 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]