Advanced Search
Article Contents
Article Contents

Alternate steady states for classes of reaction diffusion models on exterior domains

Abstract Related Papers Cited by
  • We study positive radial solutions to the problem \begin{equation*} \left\{ \begin{split} -\Delta u &= \lambda K(|x|)f(u), \quad x \in \Omega, \\u(x) &= 0 \qquad
        \mbox{ if } |x|=r_0, \\u(x) &\rightarrow 0 \qquad
        \mbox{ as } |x|\rightarrow\infty, \end{split} \right. \end{equation*} where $\Delta u=div \big(\nabla u\big)$ is the Laplacian of $u$, $\lambda$ is a positive parameter, $\Omega=\{x\in\mathbb{R}^N: |x|>r_0\}$, $r_0>0$, and $N>2$. Here, $f\in C^2[0,\infty)$ and $f(u)>0$ on $(0,\sigma)$ and $f(u)<0$ for $u>\sigma$. Furthermore, $K:[r_0, \infty)\rightarrow(0,\infty)$ is continuous and $\lim_{r\rightarrow\infty}K(r)=0$. We discuss the existence of multiple positive solutions for a certain range of $\lambda$ leading to the occurrence of an S-shaped bifurcation curve when $f$ satisfies some additional assumptions. In particular, the two models we consider are $f_1(u)=u-\frac{u^2}{K}-c\frac{u^2}{1+u^2}$ and $f_2(u)=\tilde{K}-u+\tilde{c}\frac{u^4}{1+u^4}$. We prove our results by the method of sub-super solutions.
    Mathematics Subject Classification: Primary: 34B16, 35J60; Secondary: 92F99.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Asakawa, Nonresonant singular two-point boundary value problems, Nonlinear Anal., 44 (2001), 791-809.doi: 10.1016/S0362-546X(99)00308-9.


    A. K. Ben-Naoum and C. D. Coster, On the existence and multiplicity of positive solutions of the p-Laplacian separated boundary value problem, Differential and Integral Equations, 10 (1997), 1093-1112.


    D. Butler, S. Sasi and R. Shivaji, Existence of alternate steady states in a phosphorous cycling model, ISRN Mathematical Analysis, (2012), Art. ID 869147, 11 pp.


    S. R. Carpenter, D. Ludwig and W. A. Brock, Management of eutrophication for lakes subject to potentially irreversible change, Ecological Applications, 9 (1999), 751-771.


    E. Lee, L. Sankar and R. Shivaji, Positive solutions for infinite semipositone problems on exterior domains, Differential Integral Equations, 24 (2011), 861-875.


    E. Lee, S. Sasi and R. Shivaji, S-shaped bifurcation curves in ecosystems, J. Math. Anal. Appl., 381 (2011), 732-741.doi: 10.1016/j.jmaa.2011.03.048.


    M. Scheffer, W. Brock and F. Westley, Socioeconomic mechanisms preventing optimum use of ecosystem services: An interdisciplinary theoretical analysis, Ecosystems, 3 (2000), 451-471.doi: 10.1007/s100210000040.


    E. H. Van Nes and M. Scheffer, Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems, Ecology, 86 (2005), 1797-1807.

  • 加载中

Article Metrics

HTML views() PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint