Citation: |
[1] |
J. Aleksić and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux, Comm. Math. Science, 4 (2009), 963-971. |
[2] |
L. Ambrosio, N. Fusco and Paliara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Science Publications, 2000. |
[3] |
R. Bürger, H. Frid and K. H. Karlsen, On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition, J. Math. Anal. Appl., 326 (2007), 108-120.doi: 10.1016/j.jmaa.2006.02.072. |
[4] |
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational. Anal., 147 (1999), 269-361.doi: 10.1007/s002050050152. |
[5] |
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Math., CRC Press, London, 1992. |
[6] |
S. Evje, K. H. Karlsen and N. H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function, in "Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, II" (Magdeburg, 2000), Internat. Ser. Numer. Math., 140, 141, Birkhäuser, Basel, (2001), 337-346. |
[7] |
J. Jimenez, Scalar conservation law with discontinuous flux in a bounded domain, Discrete Contin. Dyn. Syst., 2007, Dynamical Systems and Differential Equations. Proceedings of the $6^{th}$ AIMS International Conference, suppl., 520-530. doi: 10.1007/s10665-007-9166-2. |
[8] |
K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a two-dimensional resonant system of conservation laws, Commun. Math. Sci., 5 (2007), 253-265. |
[9] |
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn., 9 (2003), 1081-1104.doi: 10.3934/dcds.2003.9.1081. |
[10] |
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 28 (2002), 1-23 (electronic). |
[11] |
K. H. Karlsen, N. H. Risebro and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convective-diffusion equations with discontinuous coefficients, Skr. K. Vidensk. Selsk., 2003, 1-49. |
[12] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. |
[13] |
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rational Mech. Anal., 163 (2002), 87-124.doi: 10.1007/s002050200184. |
[14] |
E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643-673.doi: 10.1007/s00205-009-0217-x. |
[15] |
L. Tartar, Compensated compactness and applications to partial differential equations, in "Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV," Res. Notes in Math., 39, Pitman, Boston, Mass.-London, (1979), 136-212. |
[16] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.doi: 10.1007/s002050100157. |
[17] |
H. Watanabe and S. Oharu, $BV$-entropy solutions to strongly degenerate parabolic equations, Adv. Differential Equations, 15 (2010), 757-800. |
[18] |
H. Watanabe and S. Oharu, Strongly degenerate parabolic equations with nonlocal convective terms, preprint. |
[19] |
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4612-1015-3. |