Citation: |
[1] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 3 (1983), 311-341.doi: 10.1007/BF01176474. |
[2] |
B. Amaziane, S. Antontsev, L. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository, Multiscale Modeling and Simulation, 8 (2010), 2023-2047.doi: 10.1137/100790215. |
[3] |
B. Amaziane and M. Jurak, Formulation of immiscible compressible two-phase flow in porous media, Comptes Rendus Mécanique, 7 (2008), 600-605.doi: 10.1016/j.crme.2008.04.008. |
[4] |
B. Andreianov, M. Bendahmane, K. H. Karlsen and S. Ouaro, Well-posedness results for triply nonlinear degenerate parabolic equations, Journal of Differential Equations, 247 (2009), 277-302.doi: 10.1016/j.jde.2009.03.001. |
[5] |
M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations, SIAM J. Math. Anal., 36 (2004), 405-422.doi: 10.1137/S0036141003428937. |
[6] |
A. Bourgeat, M. Jurak and F. Smai, Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository, Computational Geosciences, 4 (2009), 309-325. |
[7] |
F. Caro, B. Saad and M. Saad, Two-component two-compressible flow in a porous medium, Acta Applicandae Mathematicae, 117 (2012), 15-46.doi: 10.1007/s10440-011-9648-0. |
[8] |
G. Chavent and J. Jaffré, "Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase, and Multicomponent Flows through Porous Media," Studies in Mathematics and its Applications, Elsevier, 1986. |
[9] |
Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, Journal of Differential Equations, 171 (2001), 203-232.doi: 10.1006/jdeq.2000.3848. |
[10] |
Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization, Journal of Differential Equations, 186 (2002), 345-376.doi: 10.1016/S0022-0396(02)00027-X. |
[11] |
C. Choquet, Asymptotic analysis of a nonlinear parabolic problem modelling miscible compressible displacement in porous media, Nonlinear Differential Equations and Appl., 15 (2008), 757-782.doi: 10.1007/s00030-008-8010-3. |
[12] |
C. Choquet, On a fully nonlinear parabolic problem modelling miscible compressible displacement in porous media, Journal of Mathematical Analysis and Applications, 339 (2008), 1112-1133.doi: 10.1016/j.jmaa.2007.07.037. |
[13] |
F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: The case that the porosity depends on pressure, Journal of Mathematical Analysis and Applications, 326 (2007), 332-351.doi: 10.1016/j.jmaa.2006.02.082. |
[14] |
X. Feng, On existence and uniqueness results for a coupled systems modelling miscible displacement in porous media, J. Math. Anal. Appl., 194 (1995), 883-910.doi: 10.1006/jmaa.1995.1334. |
[15] |
G. Gagneux and M. Madaune-Tort, "Analyse Mathématique de Modèles Non Linéaires de l'Ingéniere Pétrolière," Mathématiques & Applications (Berlin), Vol. 22, Springer-Verlag, Berlin, 1996. |
[16] |
C. Galusinski and M. Saad, A nonlinear degenerate system modelling water-gas flows in porous media, Discrete and Continuous Dynamical System Ser. B, 9 (2008), 281-308. |
[17] |
C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media, J. Differential Equations, 244 (2008), 1741-1783.doi: 10.1016/j.jde.2008.01.013. |
[18] |
C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media, C. R. Acad. Sci. Paris, 347 (2009), 249-254.doi: 10.1016/j.crma.2009.01.023. |
[19] |
Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media, Electronic Journal of Differential Equations, 2010 (2010), 33 pp. |
[20] |
Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media, Nonlinear Analysis, 12 (2011), 1591-1615.doi: 10.1016/j.nonrwa.2010.10.015. |
[21] |
A. Mikelić, An existence result for the equations describing a gas-liquid two-phase flow, Comptes rendus Mécanique, 337 (2009), 226-232. |
[22] |
F. Smaï, A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository, C. R. Acad. Sci. Paris, 347 (2009), 527-532.doi: 10.1016/j.crma.2009.03.011. |
[23] |
J. Talandier. Available from: http://www.andra.fr. |
[24] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems," Springer-Verlag, New-York, 1993. |