# American Institute of Mathematical Sciences

April  2014, 7(2): 317-346. doi: 10.3934/dcdss.2014.7.317

## Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

 1 King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences & Engineering, 23955-6900, Thuwal 2 Ecole Centrale de nantes, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 1, rue de la Noé, 44321 Nantes

Received  May 2013 Revised  June 2013 Published  September 2013

We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite.
The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.
Citation: Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317
##### References:

show all references

##### References:
 [1] Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281 [2] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1 [3] S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305 [4] Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations and Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042 [5] Pavol Kútik, Karol Mikula. Diamond--cell finite volume scheme for the Heston model. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 913-931. doi: 10.3934/dcdss.2015.8.913 [6] Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 [7] Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure and Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475 [8] Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 [9] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006 [10] Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211 [11] Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159 [12] Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1349-1368. doi: 10.3934/jimo.2019006 [13] Mohamed Alahyane, Abdelilah Hakim, Amine Laghrib, Said Raghay. Fluid image registration using a finite volume scheme of the incompressible Navier Stokes equation. Inverse Problems and Imaging, 2018, 12 (5) : 1055-1081. doi: 10.3934/ipi.2018044 [14] Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283 [15] Mostafa Bendahmane, Mauricio Sepúlveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 823-853. doi: 10.3934/dcdsb.2009.11.823 [16] Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic and Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713 [17] Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062 [18] Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 [19] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217 [20] Lianzhang Bao, Wenjie Gao. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2813-2829. doi: 10.3934/dcdsb.2017152

2020 Impact Factor: 2.425