June  2014, 7(3): 395-409. doi: 10.3934/dcdss.2014.7.395

Pattern formation in 2D traffic flows

1. 

Laboratoire de Physique Théorique, bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France

Received  May 2013 Revised  September 2013 Published  January 2014

We review numerical and analytical results that have been obtained for a general model of intersecting flows of two types of particles propagating towards east ($\varepsilon $) and north ($\mathcal{N} $) on a bidimensional $M \times M$ square lattice. The behaviour of this model can also be reproduced by a system of mean field equations. The low density behaviour of both models is studied, with a focus on pattern formation. Using periodic boundary conditions, particles self-organize into a pattern of alternating diagonal stripes, which corresponds to an instability in the mean-field equations. With open boundary conditions, translational symmetry is broken. One then observes an asymmetry between the organization of the two types of particles, leading to tilted diagonals whose angle of inclination differs from $45^\circ$, both for the particle system and the equations. The angle of inclination of the stripes is measured using two different numerical methods. Finally, simplified theoretical arguments based on a particular mode of propagation give a quantitative estimate for the angle of the stripes. A complementary understanding of the phenomenon in terms of effective interactions between particles is presented.
Citation: Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395
References:
[1]

C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions, J. Stat. Mech., (2011), P10013.

[2]

O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models, Phys. Rev. A, 46 (1992), R6124-R6127. doi: 10.1103/PhysRevA.46.R6124.

[3]

D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199-329. doi: 10.1016/S0370-1573(99)00117-9.

[4]

J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech., 2013 (2013), P07015. doi: 10.1088/1742-5468/2013/07/P07015.

[5]

J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, Europhys. Lett., 102 (2013), 20002. doi: 10.1209/0295-5075/102/20002.

[6]

J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect, J. Phys. A: Math. Theor., 46 (2013), 29 pp.

[7]

Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule, Phys. Rev. E, 83 (2011), 047101. doi: 10.1103/PhysRevE.83.047101.

[8]

R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E, 71 (2005), 066112. doi: 10.1103/PhysRevE.71.066112.

[9]

H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows, J. Stat. Mech., 2012 (2012), P06009. doi: 10.1088/1742-5468/2012/06/P06009.

[10]

J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models, Phys. Rev. E, 51 (1995), 175-187. doi: 10.1103/PhysRevE.51.175.

[11]

N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys., 38 (1985), 901-946. doi: 10.1007/BF01010423.

[12]

S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries, Phys. Rev. E, 54 (1996), 2409-2413. doi: 10.1103/PhysRevE.54.2409.

[13]

S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601-644. doi: 10.1103/RevModPhys.55.601.

show all references

References:
[1]

C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions, J. Stat. Mech., (2011), P10013.

[2]

O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models, Phys. Rev. A, 46 (1992), R6124-R6127. doi: 10.1103/PhysRevA.46.R6124.

[3]

D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199-329. doi: 10.1016/S0370-1573(99)00117-9.

[4]

J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech., 2013 (2013), P07015. doi: 10.1088/1742-5468/2013/07/P07015.

[5]

J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, Europhys. Lett., 102 (2013), 20002. doi: 10.1209/0295-5075/102/20002.

[6]

J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect, J. Phys. A: Math. Theor., 46 (2013), 29 pp.

[7]

Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule, Phys. Rev. E, 83 (2011), 047101. doi: 10.1103/PhysRevE.83.047101.

[8]

R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E, 71 (2005), 066112. doi: 10.1103/PhysRevE.71.066112.

[9]

H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows, J. Stat. Mech., 2012 (2012), P06009. doi: 10.1088/1742-5468/2012/06/P06009.

[10]

J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models, Phys. Rev. E, 51 (1995), 175-187. doi: 10.1103/PhysRevE.51.175.

[11]

N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys., 38 (1985), 901-946. doi: 10.1007/BF01010423.

[12]

S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries, Phys. Rev. E, 54 (1996), 2409-2413. doi: 10.1103/PhysRevE.54.2409.

[13]

S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601-644. doi: 10.1103/RevModPhys.55.601.

[1]

Pierre Degond, Angelika Manhart, Hui Yu. A continuum model for nematic alignment of self-propelled particles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1295-1327. doi: 10.3934/dcdsb.2017063

[2]

Paolo Buttà, Franco Flandoli, Michela Ottobre, Boguslaw Zegarlinski. A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic and Related Models, 2019, 12 (4) : 791-827. doi: 10.3934/krm.2019031

[3]

José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic and Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363

[4]

Alethea B. T. Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1249-1278. doi: 10.3934/dcdsb.2014.19.1249

[5]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[6]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[7]

T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195

[8]

Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001

[9]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic and Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[10]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[11]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[12]

Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations and Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005

[13]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[14]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[15]

Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693

[16]

Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084

[17]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[18]

Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036

[19]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[20]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]