-
Previous Article
Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations
- DCDS-S Home
- This Issue
-
Next Article
An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments
Pattern formation in 2D traffic flows
1. | Laboratoire de Physique Théorique, bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France |
References:
[1] |
C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions, J. Stat. Mech., (2011), P10013. |
[2] |
O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models, Phys. Rev. A, 46 (1992), R6124-R6127.
doi: 10.1103/PhysRevA.46.R6124. |
[3] |
D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199-329.
doi: 10.1016/S0370-1573(99)00117-9. |
[4] |
J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech., 2013 (2013), P07015.
doi: 10.1088/1742-5468/2013/07/P07015. |
[5] |
J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, Europhys. Lett., 102 (2013), 20002.
doi: 10.1209/0295-5075/102/20002. |
[6] |
J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect, J. Phys. A: Math. Theor., 46 (2013), 29 pp. |
[7] |
Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule, Phys. Rev. E, 83 (2011), 047101.
doi: 10.1103/PhysRevE.83.047101. |
[8] |
R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E, 71 (2005), 066112.
doi: 10.1103/PhysRevE.71.066112. |
[9] |
H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows, J. Stat. Mech., 2012 (2012), P06009.
doi: 10.1088/1742-5468/2012/06/P06009. |
[10] |
J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models, Phys. Rev. E, 51 (1995), 175-187.
doi: 10.1103/PhysRevE.51.175. |
[11] |
N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys., 38 (1985), 901-946.
doi: 10.1007/BF01010423. |
[12] |
S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries, Phys. Rev. E, 54 (1996), 2409-2413.
doi: 10.1103/PhysRevE.54.2409. |
[13] |
S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601-644.
doi: 10.1103/RevModPhys.55.601. |
show all references
References:
[1] |
C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions, J. Stat. Mech., (2011), P10013. |
[2] |
O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models, Phys. Rev. A, 46 (1992), R6124-R6127.
doi: 10.1103/PhysRevA.46.R6124. |
[3] |
D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199-329.
doi: 10.1016/S0370-1573(99)00117-9. |
[4] |
J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech., 2013 (2013), P07015.
doi: 10.1088/1742-5468/2013/07/P07015. |
[5] |
J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, Europhys. Lett., 102 (2013), 20002.
doi: 10.1209/0295-5075/102/20002. |
[6] |
J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect, J. Phys. A: Math. Theor., 46 (2013), 29 pp. |
[7] |
Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule, Phys. Rev. E, 83 (2011), 047101.
doi: 10.1103/PhysRevE.83.047101. |
[8] |
R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E, 71 (2005), 066112.
doi: 10.1103/PhysRevE.71.066112. |
[9] |
H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows, J. Stat. Mech., 2012 (2012), P06009.
doi: 10.1088/1742-5468/2012/06/P06009. |
[10] |
J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models, Phys. Rev. E, 51 (1995), 175-187.
doi: 10.1103/PhysRevE.51.175. |
[11] |
N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys., 38 (1985), 901-946.
doi: 10.1007/BF01010423. |
[12] |
S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries, Phys. Rev. E, 54 (1996), 2409-2413.
doi: 10.1103/PhysRevE.54.2409. |
[13] |
S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601-644.
doi: 10.1103/RevModPhys.55.601. |
[1] |
Pierre Degond, Angelika Manhart, Hui Yu. A continuum model for nematic alignment of self-propelled particles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1295-1327. doi: 10.3934/dcdsb.2017063 |
[2] |
Paolo Buttà, Franco Flandoli, Michela Ottobre, Boguslaw Zegarlinski. A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic and Related Models, 2019, 12 (4) : 791-827. doi: 10.3934/krm.2019031 |
[3] |
José A. Carrillo, M. R. D’Orsogna, V. Panferov. Double milling in self-propelled swarms from kinetic theory. Kinetic and Related Models, 2009, 2 (2) : 363-378. doi: 10.3934/krm.2009.2.363 |
[4] |
Alethea B. T. Barbaro, Pierre Degond. Phase transition and diffusion among socially interacting self-propelled agents. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1249-1278. doi: 10.3934/dcdsb.2014.19.1249 |
[5] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[6] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[7] |
T.K. Subrahmonian Moothathu. Homogeneity of surjective cellular automata. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 195-202. doi: 10.3934/dcds.2005.13.195 |
[8] |
Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata. Networks and Heterogeneous Media, 2019, 14 (1) : 1-22. doi: 10.3934/nhm.2019001 |
[9] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic and Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[10] |
Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 |
[11] |
Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723 |
[12] |
Yuri B. Gaididei, Christian Marschler, Mads Peter Sørensen, Peter L. Christiansen, Jens Juul Rasmussen. Pattern formation in flows of asymmetrically interacting particles: Peristaltic pedestrian dynamics as a case study. Evolution Equations and Control Theory, 2019, 8 (1) : 73-100. doi: 10.3934/eect.2019005 |
[13] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[14] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[15] |
Michael Shearer, Nicholas Giffen. Shock formation and breaking in granular avalanches. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 693-714. doi: 10.3934/dcds.2010.27.693 |
[16] |
Achilles Beros, Monique Chyba, Kari Noe. Co-evolving cellular automata for morphogenesis. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2053-2071. doi: 10.3934/dcdsb.2019084 |
[17] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[18] |
Kolade M. Owolabi. Numerical analysis and pattern formation process for space-fractional superdiffusive systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 543-566. doi: 10.3934/dcdss.2019036 |
[19] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[20] |
Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]