\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The LWR traffic model at a junction with multibuffers

Abstract Related Papers Cited by
  • We consider the Lighthill-Whitham-Richards traffic flow model on a network composed by a single junction $J$ with $n$ incoming roads, $m$ outgoing roads and $m$ buffers, one for each outgoing road. We introduce a concept solution at $J$, which is compared with that proposed in [14]. Finally we study the Cauchy problem and, in the special case of $n \le 2$ and $m \le 2$, we prove existence of solutions to the Cauchy problem, via the wave-front tracking method.
    Mathematics Subject Classification: Primary: 35L65; Secondary: 35R02.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).doi: 10.1137/S0036139997332099.

    [2]

    M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56 (electronic).doi: 10.3934/nhm.2006.1.41.

    [3]

    S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.doi: 10.1137/090754467.

    [4]

    A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

    [5]

    G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic).doi: 10.1137/S0036141004402683.

    [6]

    R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721 (electronic).doi: 10.1137/S0036139901393184.

    [7]

    R. M. Colombo, P. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106.doi: 10.1142/S0219891610002025.

    [8]

    R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.doi: 10.1137/090752468.

    [9]

    C. D'apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks, SIAM J. Math. Anal., 38 (2006), 717-740 (electronic).doi: 10.1137/050631628.

    [10]

    M. Garavello and P. Goatin, The Cauchy problem at a node with buffer, Discrete Contin. Dyn. Syst., 32 (2012), 1915-1938.doi: 10.3934/dcds.2012.32.1915.

    [11]

    M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275.doi: 10.1080/03605300500358053.

    [12]

    M. Garavello and B. Piccoli, Traffic Flow on Networks. Conservation Laws Models, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

    [13]

    M. Garavello and B. Piccoli, Conservation laws on complex networks, Ann. H. Poincaré, 26 (2009), 1925-1951.doi: 10.1016/j.anihpc.2009.04.001.

    [14]

    M. Garavello and B. Piccoli, A multibuffer model for lwr road networks, in Advances in Dynamic Network Modeling in Complex Transportation Systems, (eds., S. V. Ukkusuri and K. Ozbay), Complex Networks and Dynamic Systems, 2, Springer New York, 2013, 143-161.doi: 10.1007/978-1-4614-6243-9_6.

    [15]

    P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.doi: 10.1016/j.mcm.2006.01.016.

    [16]

    S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks, Commun. Math. Sci., 4 (2006), 315-330.doi: 10.4310/CMS.2006.v4.n2.a3.

    [17]

    M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations, SIAM J. Math. Anal., 39 (2007), 160-173.doi: 10.1137/060659478.

    [18]

    M. Herty, J.-P. Lebacque and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813-826 (electronic).doi: 10.3934/nhm.2009.4.813.

    [19]

    M. Herty, S. Moutari and M. Rascle, Optimization criteria for modelling intersections of vehicular traffic flow, Netw. Heterog. Media, 1 (2006), 275-294 (electronic).doi: 10.3934/nhm.2006.1.275.

    [20]

    M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616 (electronic).doi: 10.1137/05062617X.

    [21]

    H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Vonservation Laws, Applied Mathematical Sciences, 152, Springer-Verlag, New York, 2002.doi: 10.1007/978-3-642-56139-9.

    [22]

    M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [23]

    A. Marigo and B. Piccoli, A fluid dynamic model for $T$-junctions, SIAM J. Math. Anal., 39 (2008), 2016-2032.doi: 10.1137/060673060.

    [24]

    P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [25]

    D. Sun, I. S. Strub and A. M. Bayen, Comparison of the performance of four Eulerian network flow models for strategic air traffic management, Netw. Heterog. Media, 2 (2007), 569-595 (electronic).doi: 10.3934/nhm.2007.2.569.

    [26]

    H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B, 236 (2002), 275-290.doi: 10.1016/S0191-2615(00)00050-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return