\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An excess-decay result for a class of degenerate elliptic equations

Abstract Related Papers Cited by
  • We consider a family of degenerate elliptic equations of the form div $(\nabla F(\nabla u)) = f$, where $F\in C^{1,1}$ is a convex function which is elliptic outside a ball.We prove an excess-decay estimate at points where $\nabla u$ is close to a nondegenerate value for $F$. This result applies to degenerate equations arising in traffic congestion, where we obtain continuity of $\nabla u$ outside the degeneracy, and to anisotropic versions of the $p$-laplacian, where we get Hölder regularity of $\nabla u$.
    Mathematics Subject Classification: Primary: 35J70; Secondary: 35B65, 49K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals, Arch. Rational Mech. Anal., 99 (1987), 261-281.doi: 10.1007/BF00284509.

    [2]

    E. Acerbi and N. Fusco, Local regularity for minimizers of nonconvex integrals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 603-636.

    [3]

    G. Anzellotti and M. Giaquinta, Convex functionals and partial regularity, Arch. Rational Mech. Anal., 102 (1988), 243-272.doi: 10.1007/BF00281349.

    [4]

    L. Brasco, Global $L^\infty$ gradient estimates for solutions to a certain degenerate elliptic equation, Nonlinear Anal., 74 (2011), 516-531.doi: 10.1016/j.na.2010.09.006.

    [5]

    L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.doi: 10.1016/j.matpur.2010.03.010.

    [6]

    M. Colombo and A. Figalli, Regularity results for very degenerate elliptic equations, J. Math. Pures Appl., 101 (2014), 94-117.doi: 10.1016/j.matpur.2013.05.005.

    [7]

    D. De Silva and O. Savin, Minimizers of convex functionals arising in random surfaces, Duke Math. J., 151 (2010), 487-532.doi: 10.1215/00127094-2010-004.

    [8]

    E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5.

    [9]

    L. Esposito, G. Mingione and C. Trombetti, On the Lipschitz regularity for certain elliptic problems, Forum Math., 18 (2006), 263-292.doi: 10.1515/FORUM.2006.016.

    [10]

    L. C. Evans, A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373.doi: 10.1016/0022-0396(82)90033-X.

    [11]

    I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM Control Optim. Calc. Var., 7 (2002), 69-95.doi: 10.1051/cocv:2002004.

    [12]

    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983.

    [13]

    M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non linéaire, 3 (1986), 185-208.

    [14]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.

    [15]

    C. Imbert and L. Silvestre, Estimates on elliptic equations that hold only where the gradient is large, preprint, (2013).

    [16]

    J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858.doi: 10.1512/iumj.1983.32.32058.

    [17]

    F. Santambrogio and V. Vespri, Continuity in two dimensions for a very degenerate elliptic equation, Nonlinear Anal., 73 (2010), 3832-3841.doi: 10.1016/j.na.2010.08.008.

    [18]

    O. Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations, 32 (2007), 557-578.doi: 10.1080/03605300500394405.

    [19]

    P. Tolksdorff, Regularity for a more general class of quasi-linear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.

    [20]

    K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316.

    [21]

    N. N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184-222.

    [22]

    L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350.doi: 10.1006/jdeq.1994.1016.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return