Citation: |
[1] |
M. Bonforte and G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations, Rev. Mat. Iberoamericana, 22 (2006), 111-129. |
[2] |
M. Bonforte, R. G. Iagar and J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation, Advances in Math., 224 (2010), 2151-2215.doi: 10.1016/j.aim.2010.01.023. |
[3] |
M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021. |
[4] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2. |
[5] |
E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer Verlag, New York, 2012.doi: 10.1007/978-1-4614-1584-8. |
[6] |
S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations, Adv. Differential Equations, 13 (2008), 139-168. |
[7] |
S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations, Contemporary Mathematics, 594 (2013), 179-199.doi: 10.1090/conm/594/11785. |
[8] |
M. A. Herrero and M. Pierre, The Cauchy problem for $u_t =\Delta u^m$ when $0< m <1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.doi: 10.1090/S0002-9947-1985-0797051-0. |
[9] |
A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42 (1987), 169-222. |
[10] |
A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 83 (1997).doi: 10.1007/BF02398459. |
[11] |
A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 84 (1997). |
[12] |
J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[13] |
M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103 (1993), 146-178.doi: 10.1006/jdeq.1993.1045. |
[14] |
D. Stan and J. L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation on bounded domains, Nonlinear Analysis TMA, 77 (2013), 1-32.doi: 10.1016/j.na.2012.08.011. |
[15] |
V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl., 181 (1994), 104-131.doi: 10.1006/jmaa.1994.1008. |