\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations

Abstract Related Papers Cited by
  • In this paper we show some properties regarding the local behaviour of local weak solutions to a class of doubly nonlinear singular parabolic equations.
    Mathematics Subject Classification: Primary: 35B65, 35K67; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bonforte and G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations, Rev. Mat. Iberoamericana, 22 (2006), 111-129.

    [2]

    M. Bonforte, R. G. Iagar and J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation, Advances in Math., 224 (2010), 2151-2215.doi: 10.1016/j.aim.2010.01.023.

    [3]

    M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021.

    [4]

    E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [5]

    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer Verlag, New York, 2012.doi: 10.1007/978-1-4614-1584-8.

    [6]

    S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations, Adv. Differential Equations, 13 (2008), 139-168.

    [7]

    S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations, Contemporary Mathematics, 594 (2013), 179-199.doi: 10.1090/conm/594/11785.

    [8]

    M. A. Herrero and M. Pierre, The Cauchy problem for $u_t =\Delta u^m$ when $0< m <1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.doi: 10.1090/S0002-9947-1985-0797051-0.

    [9]

    A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42 (1987), 169-222.

    [10]

    A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 83 (1997).doi: 10.1007/BF02398459.

    [11]

    A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 84 (1997).

    [12]

    J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    [13]

    M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103 (1993), 146-178.doi: 10.1006/jdeq.1993.1045.

    [14]

    D. Stan and J. L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation on bounded domains, Nonlinear Analysis TMA, 77 (2013), 1-32.doi: 10.1016/j.na.2012.08.011.

    [15]

    V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl., 181 (1994), 104-131.doi: 10.1006/jmaa.1994.1008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return