Advanced Search
Article Contents
Article Contents

$L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations

Abstract Related Papers Cited by
  • In this paper we show some properties regarding the local behaviour of local weak solutions to a class of doubly nonlinear singular parabolic equations.
    Mathematics Subject Classification: Primary: 35B65, 35K67; Secondary: 35K55.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Bonforte and G. Grillo, Super and ultracontractive bounds for doubly nonlinear evolution equations, Rev. Mat. Iberoamericana, 22 (2006), 111-129.


    M. Bonforte, R. G. Iagar and J. L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast $p$-Laplacian equation, Advances in Math., 224 (2010), 2151-2215.doi: 10.1016/j.aim.2010.01.023.


    M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021.


    E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.


    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer Verlag, New York, 2012.doi: 10.1007/978-1-4614-1584-8.


    S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations, Adv. Differential Equations, 13 (2008), 139-168.


    S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations, Contemporary Mathematics, 594 (2013), 179-199.doi: 10.1090/conm/594/11785.


    M. A. Herrero and M. Pierre, The Cauchy problem for $u_t =\Delta u^m$ when $0< m <1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.doi: 10.1090/S0002-9947-1985-0797051-0.


    A. S. Kalashnikov, Some problems of the qualitative theory of nonlinear degenerate second order parabolic equations, Russian Math. Surveys, 42 (1987), 169-222.


    A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 83 (1997).doi: 10.1007/BF02398459.


    A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations, Journal of Mathematical Sciences, 84 (1997).


    J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.


    M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103 (1993), 146-178.doi: 10.1006/jdeq.1993.1045.


    D. Stan and J. L. Vázquez, Asymptotic behaviour of the doubly nonlinear diffusion equation on bounded domains, Nonlinear Analysis TMA, 77 (2013), 1-32.doi: 10.1016/j.na.2012.08.011.


    V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl., 181 (1994), 104-131.doi: 10.1006/jmaa.1994.1008.

  • 加载中

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint