Advanced Search
Article Contents
Article Contents

A clamped plate with a uniform weight may change sign

Abstract Related Papers Cited by
  • It is known that the Dirichlet bilaplace boundary value problem, which is used as a model for a clamped plate, is not sign preserving on general domains. It is also known that the corresponding first eigenfunction may change sign. In this note we will show that even a constant right hand side may result in a sign-changing solution.
    Mathematics Subject Classification: Primary: 35J40; Secondary: 35B50.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Bauer and E. Reiss, Block five diagonal metrics and the fast numerical computation of the biharmonic equation, Math. Comp., 26 (1972), 311-326.doi: 10.1090/S0025-5718-1972-0312751-9.


    T. Boggio, Sull'equilibrio delle piastre elastiche incastrate, Rend. Acc. Lincei, 10 (1901), 197-205.


    T. Boggio, Sulle funzioni di Green d'ordine $m$, Rend. Circ. Mat. Palermo, 20 (1905), 97-135.


    Ch. V. Coffman, On the structure of solutions to $\Delta ^{2}u=\lambda u$ which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal., 13 (1982), 746-757.doi: 10.1137/0513051.


    Ch. V. Coffman and R. J. Duffin, On the fundamental eigenfunctions of a clamped punctured disk, Adv. in Appl. Math., 13 (1992), 142-151.doi: 10.1016/0196-8858(92)90006-I.


    Ch. V. Coffman, R. J. Duffin and D. H. Shaffer, The fundamental mode of vibration of a clamped annular plate is not of one sign, in Constructive approaches to mathematical models (Proc. Conf. in honor of R. J. Duffin, Pittsburgh, Pa., 1978), Academic Press, 1979, 267-277.


    A. Dall'Acqua and G. Sweers, On domains for which the clamped plate system is positivity preserving, in Partial Differential Equations and Inverse Problems, (eds. C. Conca, R. Manasevich, G. Uhlmann and M. Vogelius), AMS, Contemp. Math., 362 (2004), 133-144.doi: 10.1090/conm/362/06609.


    A. Dall'Acqua and G. Sweers, The clamped-plate equation for the limaçon, Ann. Mat. Pura Appl., (4) 184 (2005), 361-374.doi: 10.1007/s10231-004-0121-9.


    A. Dall'Acqua and G. Sweers, Estimates for Green function and Poisson kernels of higher order Dirichlet boundary value problems, J. Differential Equations, 205 (2004), 466-487.doi: 10.1016/j.jde.2004.06.004.


    R. J. Duffin, On a question of Hadamard concerning super-biharmonic functions, J. Math. Phys., 27 (1949), 253-258.


    M. Filoche and S. Mayboroda, Universal mechanism for Anderson and weak localization, Proc. Natl. Acad. Sci. USA, 109 (2012), 14761-14766.doi: 10.1073/pnas.1120432109.


    P. R. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math., 1 (1951), 485-524.doi: 10.2140/pjm.1951.1.485.


    F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-12245-3.


    H.-Ch. Grunau and F. Robert, Positivity and almost positivity of biharmonic Green's functions under Dirichlet boundary conditions, Arch. Ration. Mech. Anal., 195 (2010), 865-898.doi: 10.1007/s00205-009-0230-0.


    H.-Ch. Grunau and G. Sweers, Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr., 179 (1996), 89-102.doi: 10.1002/mana.19961790106.


    H.-Ch. Grunau and G. Sweers, Sign change for the Green function and the first eigenfunction of equations of clamped-plate type, Arch. Ration. Mech. Anal., 150 (1999), 179-190.doi: 10.1007/s002050050185.


    H.-Ch. Grunau and G. Sweers, In any dimension a "clamped plate" with a uniform weight may change sign, Nonlinear Anal. A: T. M. A., 97 (2014), 119-124.doi: 10.1016/j.na.2013.11.017.


    J. Hadamard, Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, in Oeuvres de Jacques Hadamard, Tome II, CNRS Paris, (1968), 515-641; reprint of Mémoires présentés par divers savants a l'Académie des Sciences, 33 (1908), 1-128.


    J. Hadamard, Sur certains cas intéressants du problème biharmonique, in Oeuvres de Jacques Hadamard, Tome III, CNRS Paris, (1968), 1297-1299; reprint of Atti IV Congr. Intern. Mat. Rome, (1908), 12-14.


    V. A. Kozlov, V. A. Kondrat'ev and V. G. Maz'ya, On sign variation and the absence of "strong'' zeros of solutions of elliptic equations, Math. USSR Izvestiya, 34 (1990), 337-353.


    Ch. Loewner, On generation of solutions of the biharmonic equation in the plane by conformal mappings, Pacific J. Math., 3 (1953), 417-436.doi: 10.2140/pjm.1953.3.417.


    P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177.doi: 10.1007/BF00251232.


    G. Szegö, On membranes and plates, Proc. Nat. Acad. Sci. U.S.A., 36 (1950), 210-216.doi: 10.1073/pnas.36.3.210.


    G. Sweers, When is the first eigenfunction for the clamped plate equation of fixed sign? in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), Electron. J. Diff. Eqns. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001, 285-296.

  • 加载中

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint